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V" EXECUTIVE SUMMARY

5 1.9 Introduction -

In the early 1960's, the United States Army supported an extensive exper- ®.
imental and theoretical research program [47) on radiowave propagatiuvn in the '
environment of a tropical, thickly vegetated jungle. The experimental data ac-
quired during this program were later used by Tamir ([93,107,108] to validate a
theoretical propagation model which shows that, for frequencies less than 200
MHz, the principal mechanism responsib'e for long-distance propagation is the
so-called lateral wave. According to Tamir's theory, a lateral wave propagates
upward from the transmitting antenna through tlm vegetative canopy to the tree
tops, along the air-canopy interface, and downward from the tree tops through
the canopy to the receiving antenna.
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Recently, the Army has become interested in the development of several ‘.
spread-spectrum radio systems (e.g. Packet Radio, PLRS, JTIDS) operating in
the frequency band 200-2000 MHz. Frca the perspective of radio wave prop-
agation, these newer systems differ from earlier ones in three important re-
spects: (1) their higher operational frequencies, (2) their broader spectral
occupancy, and/or (3) their pulsed (digital) mode of operation. The Tamir
model, however, ic valid primarily below 200 NHz and, further, considers only
the propagation of an unmcdulated, time-harmonic signal in a continuous iso-
tropic medium,
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This report describes & stochastic radiowave projagation model useful for
assesring the effects of forests ond other vegetation upon digital spread-sgpec-
trum radio communication systems operating in the 200 - 2000 MHz band. Accord-
ing to this model, the forest is represented as a tims-invariant ensemble of lossy,
randomly positioned and oriented discrete canonical scatterers. Tree trunks are
modelled as infinitely-long, circular, dielectric cylinders; branches as finitely-
long, circular dielectric cylinders; and leaves as flat, circular, dielectric
discs. The orientation of these elements must be specified (statistically) be-
cause their scaitering is directional. Thus the model is anisotropic, with dif-
ferent properties in different directions. The wmodel is developed in sufficient
detail to be useful in the prediction of attenuation and puise distortion »f mean

scittered radiowaves. Areas for future study are identifird below in Sectians 3,
4, 5, 7, and 8,
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2.0 Radiowave Scattering in Discrete Random Media

The forest is viewed as a random ensemble of tree trunks, branches, and
leaves all having prescribed location and orientaticii statistics. Because of
- the inherent randomness associated with this medium of discrete scatterers, the
behavior of propagating radiowaves within the forest cannot be de~scribed by tradi-
tional, deterministic electromawmetic models but rather only by modern stochastic - 9
models. Such models provide th:e basis for determining the two most important char- ]
acteristics of the propagating electromagnetic wave: the mean field component,
and the space-frequency correlation function which characterizes the random (or
fluctuating) field component. See Section 2.2.4.
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- @ The stochastic electromagnetic model employed by CyberCom as the basis for

this study of radiowave propagation through the forest is described in Section 2
of thina seport. The model vas first developed by Foldy [53] and later extended
by Lax [55a], Twersky [64], Lang [57], and othexs. The forest is considered to
be a discrete medium representable »s a time-invariant ensemble of randomly

'®
TIPS G

P

TCTOFT TR
 J
9

E~-1




YT VY
'

L,  SAuEaroul el
a I3

;—r—'v"v"ﬁ' o

positioned and oriented discrete canonical scatterers. Tree trunks are mcdeled
a: infinitely-long, circular, éielectric cylinders; branches aa finitely-long,
circular, dielectric cylinders; and leaves as flat, circular dielectric discs.

The electromagnetic waves scatftered by the canonical scatterars (the cyl-
inders and discs) are related to the fielde induced within them by the incident
fieldas. The fields induced within a single sacatterer are ielated to the inci-
dent electromagnetic wave through the transition operator. This latter rela-
tion arises as a direct consequence of the linearity implicit in Maxwell's
equations. Scatterers are also characterized by the amplitude of the scattered
field when the scatterer is illuminated by a plane-wave. PRoth the transition
operator and the scattering amplitude are employed in the development of the
theory. CyberCom has utilized the Foldy-lax model in considering radiowave
scattering within an unbounded forest comprised of either two-dimensional scat-
terers (infinitely-long, circular, cylinders representing tree trunks) or
threa-dimensional scatterers, (finitely-long, circular, cylinders representing
branches, and flat, circular, discs representing leaves). For thesa media,
CyberCom used the Twersky model to derive mathematical expressions Jescribing
the behavior of the mean scattered field and the space-frequency coxrrelation
function. These expressions, which represent the principal results of Section
2, provide the basis for subsequent studies addressed in later sections of this
report relating to the effective permittivity (suasceptibility) of the forest, the
specific attenvation of radiowaves propagating through the forest, the estimation
of contributions by the lateral wave propagating above an anisctropic forest, the
dispersion of broadband radiowave pulses, and the assessment of the relative
strength of the mean and random components of the scattered radiowave.

3.0 Dyadic Scattering Mmplitude

The stochastic electromagnetic model employed by CyberCom as the basis for
this study of radiowave propagation through forests is predicated upon the asser-
tion that the far-field scattering behavior of the individual canonical scatterzxs
(the cylinders and discs) can be characterized by a (dyadic) transition operator

and/or scattering amplitude. In Chapter 3 of this report, mathematical exprsssions

are derived relating the scattering amplitudes of the three canonical rcatterers
to the dimensions, orientation, and permittivity of the scatterer and to the fre-
quency and polarization of the propagating radiowave. Approximate expressions
valid only in the low-frequency (Rayleigh) regime have been obtained for all three
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canonical scatterers. In addition, e¢xact expressions valid for all frequency bands
have Deer obtained for infinite-length, circular, dielectric cylinders (tree trunks)
and approximate expressions suitable for the resorant regime have been obtained for

discs (leaves). These expressions represent the principal results of Section 3.

A regsonant model for finite-lengtih, circular, dielectric cylinders (branches) las
yst to be developed.

4.0 Coherent Forest Scattering

A physically-appealing representation for the mean field component can be
obtained by postulating that the mean (or coherent) field component satisfies
Maxwell's equations "in the mean" and that the ensemble of discrete scatterers
can ke replaced by an equivalent continuous medium described by an effective
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dyadic permittivity g§. In genaral, g has been fcund to depend upon the direction
of radiowave propagation through the forest; such media are termec spatially dis-

persive, See Section 4.1. Becauss g is a dyadic, the forest is fourd, in general,
to be anisotropic.

A constitutive parameter of the squivalent continuous medium closely allied
to the effective dyadic permittivity g is the effective dyadic susceptibility x,
80 defined that g = I + x where ] is the unit dyadic. CyberCom has found that
X is directly proportional to the fractional volume of the forest occupied by the
scatterers. As a consequence, it is a parameter which is conveniently scaled to
scatterer density and, therefore, is preferred over g for the characterization
of the equivalient medium. Mathematical expressions for the effective dyadic sus-
captibility of unbounded forests of tree trunks, branches, and leaves have been
obtained in Section 4 under the hypothesis that the orientation distribution of
the canonical scatterers is azimuthally uniform about the vertical. Numerical

computations based upon typical forest parameters show reasonably good agresament
with values inferred from measurements.

CyberCom has solved the wave equation for the mean scattered field prop-
agating through an unbounded forest consisting solely of tree trunks, branches,
or leaves. The solution reveals that, to a first approximation, the horizontally-
and vertically polarized waves propagate independently and without any depolariza-
tion. Further, these waves propagate with velocities der-. lent upon the inclina-
tion of their wave-normal to the forest floor. These eff::=s are a consequence

of the anisotropy and spatially-dispersive character of the equivalent forest
medium.

In general, the wave propagation constant has both real and imaginary com-
ponents. The real part is expressed in radians per weter; the imaginary part,
also called the spacific attenuation, is expressed in neperxs per meter or, alter-
natively, in decibels per meter. Mathematical expressidns for the specific at-
tenuation of radiowaves propagating through unboundsd forests of tree trunks,
branches, and leaves have bean obtained in Section 4 using the dispersion re-
lation and the effective Adyadic susceptibility. Numerical computations based
upon typical forest parameters show reasonably good agreement with measured values.

Experimental verification of the electromagnetic modsl and, ultimately, pre-
diction of radio system performance reguires the identification of measureable
quantitative parameters to characterize the forest. Some of these parameters
have already been identified by CyberCom during the course of this study. Some
of these parameters (e.g., the size and relative permittivity of individual tree
trunks, branches or leaves).are tarmed "microscopic™; others (e.g., number of
trees per hectare or branches or leaves per cubic meter, foliage orientation dis-
tridution) are termed "macroscopic®. 1in the low-frequency (Rayleigh) regime,
CybexCom has Been able to derive fairly simple engineering expressions relating
specific attenuation to salient parameters of the forest. One composite parameter,
especially important at low frequencies is the fractional volur~ occupied by the
vegetation. Prior to this study, no such expressions were available for predicting
the relationship between specific attenuation (dB/m) and salient forest parameters.
Nore work is required to identify real-world forest types and to derive the asso-
ciated susceptibilities and specific attenuations.
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5.0 Anisotropic Forest-Slab Model

The forest model described in previous sections of this report (an unbounded
ensemble of randomly-positioned tree trunks, branches and leaves having prescribed
location and orientation statistics) can be refined by assuming the trees to be
spread uniformly in height above a smooth forest floor and bounded above by air.
Earlier efforts [93,104,107) have shown, however, that the presence of the ground
complicates the model significantly. These complications can be avoided, however,
by allowing the ground plana to recede from the air-forest interface so that the
model adopted by CyberCom provides a very good approximation to the basic slab
model if both the transmitting and receiving antennas are not located too close
to the ground [107]. Further work should include the effects of the ground plane.

The lower half-space representing the forest is characterized (at least so far
as the mean scattered fields are concerned) by effective dyadic permittivity g and
80 may be considered, in general, to be electrically anisotropic and spatially dis-
persive. The relation between the effective Ayadic permittivity g and the biophys-
ical parameters of the forest has been discussed previously. A transmitting antenna
repregerntable as a vertical (Hertzian) dipole having a time-harmonic current moment

of angular frequency w is assumed to be immersed a distance d below the air-forest
interface.

The electromagnetic boundary value problem suggested by the anisotropic half-
space model has been solved by CyberCom using the classical approach first described
dy Sommerfeld [111] and later extended by Brekhovskikh [87]. In effecting this
solution, CyberCom considered the forest to be uniaxially anisotropic (a consequence
of the prescribed azimuthal uniformity in the scatterer-orientation probability dis-
tributions). Earlier, Sachs and Wyatt [101], and Tamir and others [93,107] had con-
sidered similar, but isotropic, slab-type models based upon postulated effective
permittivities which could not be related directly to the biophysical parameters of
the forest. A principal conclusion derived from the earlier efforts was the exper-
imentally-confirmed conjecture that radiowave propagation over long distances be-
tween antennas within forests is dominated by a so-called lateral wave. According
to those models, ths lateral wave propagates from the transmitting antenna up
through the forest at the critical angle to the air-forest interface, through the
air along the air-forest interface, and down through the forest at the critical
angle from the air-forest interface to the receiver. Because a substantial frac-
tion of the transmission path of the lateral wave can lie in the dissipationless
air, the transmission loss associated with the lateral wave can be significantly
lower than that associated with the direct wave through the forest. The former
wag characterized by Tamir as inversely proporticnal to the square of the distance.

The anisotropic half-space model considered by CyberCom also shows that the
propagation of the mean field scattered from randomly-positioned tree trunks,
branches, and leaves is dominated at low frequercies and large distances by the
lateral wave. Preliminary studies reported in Section 7 suggest that in the fre-
quency band 200 - 2000 MRz the non-coherent random field is larger tchat the co-
herent mean field, causing large spatial fluctuations.

6.0 Forest Pulse Response

The anisotropic forest-slab model developed by CyberCom in Section 5 of this
report is a time-harmonic model in the sense that the signal radiated by the an-
tenna is a sinusoidal waveform of angular frequency w. However, because the
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aquivalent contiruvwous medium characte-ized by the effective dyadic permittivity
£ is a linear medium, Pourier-transf.ir techniques can be employed to generalize
the model so that it can acccmmodate such arbitrarily-modulated waveforms as the
pulse transmissions employed for spread-spectrum digital systems. Due to the
complex frequency dependence exhibited by the effective dyadic permittivity of
the forest, the model employs numerical techniques based upon the fast Fourier
transform. Using this model, in Section 6 of this report, the forest pulse re-
sponse, defined here as the vertically-polarized component of the mean scattered
electric field, is found for a transmitted 5.8 nanosecond rectangular pulse
having a carrier frequency of 600 Megahertz. The model can be used to assess
medium-induced pulse distortion and inter-symbol interference and can be easily
extended to accommodate other field components of the mean wave, arbitrary an-
tenna types, anda even Doppler effects induced by terminal antenna movement.

EL o LA A LR SUL el

7.0 Non-Coherent Forest Scatteriing

As a radiowave propagates through the forest, power associated with the mean
(or coherent) field is transformed to the random (or non-coherent) scattered
field. In Section 7, this phenomenom is examined and the mechanism related to
specific biophysical parameters of the forest. To ease the mathematical burden,
the forest has been represented as an unbounded medium of infinitely-long, par-
allel tree trunks with transmitting antenna represented as a line-source par-
allel to the trees. Attention has been focused upon the Rayleigh-scattered field
intensity of a radiowave propaaating normal to the trunks. The results show
that the intensity of the non-coherent scattered field increases relative to that
of the coherent (mean) field with increasing distance from the source and with
increasing frequency. 1s is desirable to study the non-coherei.t field further
and to attempt to include the effects of leaves.

8.0 COonclusions

In summary, the homogenous, isotropic, refracting slab of a forest has
been replaced by CyberCom with an inhomogenous, anisotropic, scattering ensemble
of trunks, branches, and leaves. In consequence:

1. The lateral-wave contribution has been found even above 200 Megahertz.

2. FPreliminary vaiidation of the model has shown rough agreement with

experiments.

3. Results have been obtained for narrow pulse transmission at 600 MHz.

4. A preliminary study has emphasized the importance of the incoherent
: component of the transmitted field,

! As the CyberCom approach is ambitious in both scope and depth, the following
! remain to be done:
'Y a. The techniques s'.ready developed must be exercised to determine the
! relative impor.ance of forest components and the effects of varying
critical parameters. Por example, if the contribution of branches
is major, the difficult characterization of the scattering properties
should be advanced in the resonant region.
‘ b. The effects of antenna Adirectivity, the ground, and texminal move-
' . ment shouid be incorporated into the model.
c. The difficult transport theory for the important non-~coherent scat-
tered wave should be developed as far as practical.
4. Forest studies must be pursued to quantify important biophysical para-
meters in areas of interest.
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E 1.0 Introduction oy
: =4
.tg This report describes a stochastic radiowave propagation »
g model useful for assessing the effects of forests and other vege- -

tation upon radio communication systems operating in the 200 - 2000 i
Megahertz frequency band. 1In this introductory section, the back- ﬁ{
ground leading to the requirement for such a model is presented, ;*

with a summary of the approach employed for its development and an
outline of this report.

T .7

T
o

1.1 Background f

R
®

The United States Army has had a iong and continuing interest
in radiowave propagation through forest, jungle, or otherwise
vegetated environments. In the eariy 1960's, the Army supported an
1% axtensive experimental and theoretical research program (47! on
radiowave propagation in the environment of a tropical, thickly
vegetated jungle. The experimental data acquired during this pro-
gram were later used by Tamir [93, 107, 108] to validate a theoret-
icval propagation model which shows that, for frequencies less than
200 MHz, the principal mechanism responsible for long-distance
propagation is the sc-called lateral wave. According to this .
theory, a lateral wave propagates upward from the transmitting jﬁ
antenna, through the vegetative canopy to the tree tops, along the .ﬁ
air-canopy interface, and downward from the tree tops through the ot
canopy to the receiving antenna. Prior to the Army's research
program, it was generally believed, primarily on the basis of mea-
A surements made in England by Saxton and Lane [36], that the excess
i

(specific) attenuation contributed by the foliage per meter of path
length was independent of distance and unacceptably high for the
tactical deployment of VHF radio sets on long paths in forests.

El- Some of the experimental data used by Tamir and the Army in refuting

. this erronecus contention are shown in Figure 1-1 along with the

' experimental data of Saxton and Lane.

v
: Recently, the Army has become interested in the development of
LS several spread-spectrum radio systems (e.g., Packet Radio, PLRS,

JTIDS) [163). From the perspective of radiowave propagation, these
L 5
3 .-
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L Figure 1-1: Experimental Data of Saxton and Lane [33]

;i and Tamir [107]
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newer systems differ from earlier ones in three important respects;
(1) their higher operational frequencies, (2) their broader spec-
tral occupancy, and (3) their pulsed (digital) mode of transmission.
The intelligent deploymeit of these systems in vegetative environ-
ments requires a radiowave propagation model capable of describing
(1) the attenuating characteristics of whatever propagation mech-
anism is likely to prove dominant at these higher frequencies, and
(2) the time-variant, dispersive characteristics of the vegetation
as it affects wideband, pulsed, transmission modes.

To support this requirement. for enhanced propagation models,
the Army has again embarked upon an ambitious research and develop-
ment program, [164) but now directed toward the higher frequency
bands (200 - 2000 MHz) and digital spread-spectrum modulation tech-
nigues typifying the modern electronic battlefield. Experimental
aspects of this program have included wideband propagation measure-
ments in the presence of forests (29), the derivation of empirical
path-loss propagation models [45), and, most recently, the develop-
ment of sophisticated, microprocessor-controlled, spread-spectrum,
mobile radio measurement equipment. Complementary theoretical
aspects of the program are described in this report.

Prior to the publication of this report, there had been no
theoretically-based radiowave propagation model for vegetative en-
vironments suitable for frequencies in the band 200 - 2000 MHz and
capable of describing not only transmission path attenuation but
also pulse distortion. The Tamir model is valid primarily below
200 MHz and, further, considers only the propagation of an unmodu-
lated, time-harmonic wave; no attempt is made to examine the effect
of frequancy-dispersive multipath on pulsed signals. Recently,
Brown and Curry [25) have developed a UHF vegetative model for air-
borne, aynthetic aperture radars operating near grazing incidence.
Their model, however, neglects the effects of leaves and, further,

does not consider the lateral wave found to be so important by
Tamir.
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1.2 Technical Approach

The forest is considered to be a discrete random medium repre-
sentable as a time-invariant ensemble of randomly positioncd and
oriented discrete canonical scatterers. Tree trunks are modelled
as infinitely-long, circular, dielectric cylinders; branches as
finitely~long, circular dielectric cylinders; and leaves as flat,
circular dielectric discs. The electromagnetic wave propagating
within this medium is representable as the sum of two components:

a mean field component and a residual random (or fluctuating)
field component. The scatterers are assumed to be characterized by
either their transition operator or their scattering amplitudes.
Using a discrete scattering model originally proposed by Foldy ([53)
and later extended by Twersky, [(64] lLax, [55a) Lang [57]) and others,
equations are derived which describe the behavior of the mean field
and the space-frequency correlation function of the random field.

In this report, attention is concentrated on the behavior of
the mean field® It is shown that with regard to this component,
the ensemble of discrete scatterers can be represented by an equiv-
alent continuous medium characterized by an effective dyadic per-
mittivity which can, in turn, be related directly to the size,
shape, orientation, number density and permittivity of the scat-
terers themselves. This equivalent nedium is then used to determine
the wave propagating within an unbounded iorest, and to define an
anisotropic forest slab model analogous to the isotropic slab model
introduced by Sachs and Wyatt [10l1]) and studied by Tamir [107].

The electromagnetic fields scattered from the tree trunks,
branches, and leaves are assumed to be linearly related to the
mutually-induced currents excited within them by the propagating
radio wave. As a consequence, the forest transmission channel be-
tween the transmitter and receiver can be considered linear, and
Fourier spectral techniques employed to extend the time-harmonic
forest slab model to encompass arbitrarily-modulated transmissions.

*Chapter 7 shows the importance of the random or noncoherent field.
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1.3 Scope

This report uses a stochastic model for describing the be-
havior of radiowaves propagating through forests or other vegetated
regions. The discrete scattering theory supporting the model is
developed in Sections 2 and 3. 1In Section 4, the forest is repre-
sented (at ieast so far as the mean scattered field is concerned)
by an equivalent continuous medium, and characterized by an effec-
tive dyadic permittivity which is directly related to the biophy-
sical parameters of the forest. Also in Section 4, expressions for
the specific attenuation are developed, and evaluated for typical
biophysical parameters of a deciduous, hardwood forest. 1In Section
5, an anisotropic forest slab model is introduced and the relative
contributions of the different propagation modes (direct wave, re-
flected wave, and lateral wave) assessed. The anisotropic forest
slab model is applied in Section 6 to accommodate arbitrarily-
modulated waveformsg; rnumerical results are presented for the case
of a broadband r-f puise. Section 7 considers the relative impor-
tance of the random (fluctuating) fieid.

Although the model described herein can accommodate transmit-
ting and receiving antennas of arbitrary directivity and polariza-
tion, this initial study emphasizes vertically-polarized, electri-
cally-short, linear antennas. Further, although Doppler effects
due either to wind~induced tree motion and/or terminal (antenna)
motion can also be accommodated by the model, they are disregarded
here. Finally, although the validity of the model is supported
tentatively by comparison with measurements, this will be pursued
further as the model is developed and additional experimental data
become available.
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2.0 Radiowave Propagation in Discrete Random Media

° The basic methodology for describing radiowave propagation
through the forest is formulated in this section. Because of the
complexity of vegetation, stochastic or random methods are used
rather than deterministic techniques. The forest is viewed as a

Py random ensemble of trunks, branches and leaves. Equations are
then developed for the mean and correlation of the electromagnetic
fields. From these averages, physical quantities such as attenua-
tion, propagation delay and pulse dispersion are obtained.

-

4 SRR

9
n
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2.1 Representation of Scattered Electromagnetic Fields

The stochastic approach takes the viewpoint that the field
quantities are composed of a mean component and a random (or fluc-
‘0 tuating) component. If y represents an electromagnetic field
quantity such as E or H, it is in general a function of the loca-
tion and orientation of the vegetative components. Since these
are randomly located and oriented, the field guantity ¢y is a random

o variable. As such, it can be broken up into a mean component, <y>,
and a fluctuating component, V¥, i.e.

; Vo= <y + Y (2-1-1)

i PY Here the brackets, < >, have been used to denote an ensemble

_ average. Taking the average of Equation (2-1-1) shows that <y>=0, X
- a reasonable result since the mean has already been extracted o
tt- from . ‘-sz
p\v The correlation function of y (see Section 2.2.4) can be de- nj
. termined by multiplying ¢ and its complex conjugate y* and averag- f
\ ing over the ensemble. By using Equation (2-1~1) and the fact that j
‘ the average fluctuations are zero, the correlation function of y j
EQ- can be written as B

<YY*> = <Y><P*> + <PP*>

Here the correlation is broken up into two compcnents: a mean part,
<¢> <y*>, and a fluctuating component <yy*>. When absorption is
; impcrtant than scattering, the fluctuating component is small. .-3

; This is typically the case when the wavelength is large compared

) 2-1
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to the size of the gcattexers. In this regime, the
correlation can be approximated by

<PP*> = <cyd>cy*s (2-1-3)

It is this approximation that is inherent in early attempts at
forest modeling (92, 93, 100, 101, 106, 107, 108). The forest was
replaced by a dielectric slab and, in effect, mean fields were
computed.

The development of equations for the mean and correlation can
be approached in two different ways. They are the continuous and
discrete modeling procedures. The continuous approach uses the
mean and correlation of the effective forest permittivity as input
information to the model. The discrete approach, on the other hand,
uses the scattering amplitudes of individual scatterers, as well as
the position and orientation statistics of scatterers. Examples of
modeling by the continuous approach are provided by Keller (56],
Besieris and Kohler [49) and Tsang and Kong [62]), while the discrete
approach has been used by Twersky [63, 64), Ishimaru [54, 55) and
Lang [57, 58]. The continuous modeling approach tends to be some-
what simpler than the discrete method. This is due to the need for
scattering amplitudes of individual scatterers in the discrete
method. The discrete technique, however, provides a closer connec-
tion with reality. Individual scatterer sizes and dielectric con-
stants can be measured; the effective dielectric permittivity and
its correlation, as required by the continuous approach, are diffi-
cult quantities to determine.

For the discrete case, an approximate equation for the mean
field was obtained by Foldy (53] for dipole scatterers and later

by Lax [55a] for resonant-size scatterers. The mean equation is

valid when the fractional volume of vegetation is small. This cri-
terion appears to be satisfied within most forests (see Section 4.3).
Twersky [63] subsequently derived an approximate equation for the
correlation which again is valid when the fractional volume is

small. It is these basic equations that will be used to obtain the
macroscopic effects of vegetation on radiowave propagation.

i
R
N
-




2.2 Two-Dimensional Scattering Media

Scattering by an aggregate of parallel dielectric cylinders
is considered in this section. Because of the planar symmetry of
the problem, scalar rather than vector equations can be used. This
substantially simplifies the analysis and thus makes the derivation
of the mean and correlation equations more transparent. In addi-
tion, the problem provides a good model for a forest consisting
wholly of trunks or ore in which trunks have the dominant effect
on the channel properties.

2.2.1 Model Formulation

Consider a collection of N identical parallel dielectric
cylinders each having complex relative permittivity & and cross-
sectional surface area sp' ‘these scatterers are shown in Figure
2-1. In this figure a cross-sectional view of the forested region

is shown. The forest is totally contained within the area S.

Aralysis of the problem begins by considering Maxwell's time-
harmoni: equations (with an exp{jwt} time dependerce assumed)
VXE = ~jwu H
(2-2-1)
Vxd = jwe,e(&t)g + is
where u, and €, ar? the permeability and permitcivity, respectively,
of free space, « is the angular frequency, and

“(it) =1 + .§ xj(gt) (2-2-2)
j=1
is the relative permittivity of the scatterers as a furction of
transverse vector position x,. The susceptibility function Xj(gt)
represents the susceptibility of the jth gcatterer as a function
of position. It is given by

(Xy + X, inside jth gcatterer

Xq(x,) = (2-2-3)
3T 0 , x, outside jth gcatterer
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Here Xz iz the susceptibility of a scatterer, which is related tc
ep by Xp = € = 1.

To reduce the vector field problem to a scalar field problem,
the current J, is assumed to have the following form

Jg = Jy(x, 20 * (2-2-4)

It has been tacitly assumed in writing Equation (2-2-4) that the
gscatterers are parallel to the z-axis. The electromagnetic fields
are decomposed into trancverse and z-directed compcnents so that

E=E +E2°
= =t = (2-2-5)

Ho=H +Hz°

Substitution of Eguations (2-2-4) and {2-2-5) into Equation (2-2-1)
reveals that E, and H, are the only field components excited, and
that they satisfy

[V + kee(x ) IE (%) = Juued,(x,) (2~2~6)

Here 7, is the transverse del operator and k2 = w?y,e,. The problem
has been scalarized. As a result, the complete field behavior can
be obtained from the scalar field Ez'

It is convenient at this point to introduce an operator nota-
tion. This notation will highlight the important aspects of the
development while suppressing unimportant details. It will also
make the parallelism that exists between the scalar and vector

models more apparent. The operator notation is introduced by de-
fining the following quantities:

L= (V2 +k3) vy = kﬁxj(zt) (2-2-8)

Y =E g = -Juned, O (2-2-9)

By using tris notation in Equation (2-2-6) the wave equation can be
written as

N
L - V,jYy = (2-2-10)
( jzl ’) J

*2® is a unit vector in the g direction.
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For later use, the field Y can be decomposed into incident and
scattered parts. This is written as

Y= ¥, + ¥ (2-2-11) :

. ot A
LIPS v, . e .
¢ o LI

s &

where Vi is the incident wave and ?. is the scattered wave. The
incident field Yi is the field that would exist if the scatterers i
were not present, thus ’;

et AT
TR
20 T e

LY, = g (2-2-12)

2.2.2 8Single-Scatterer Characterization

Before the N-particle problem can be addressed the single
scatterer must be characterized electromagnetically. For this pur-

pose, the transition operator and scattering amplitude are int:o-
duced in this section.

Consider a single scatterer located at the origin as shown in
Figure 2-2. The electric field satisfies the wave equation given
by Equation (2-2-10) with N=1. This equation is

L 4
(L-Vy=g (2-2~13) '
where ~
= 2 - - .
v koX(x,) (2-2-14) -
with ;
v =e, g = -jwu,Jz (2-2-15) :
and ¢
: X, » X, inside S
N X(x,) = { . t P (2-2-16)
E' 0 , x, outside Sp
b @
re Lower-case notation has been employed for the field as a reminder

that only one scatterer is being considered.

e 4 vy
ol onih.

The transition operator will now be introduced. This operator
relates the induced sources within the scatterer to the incident ")
field upon the scatterer. To develop this relation, the field is
separated into incident and scattered components so that
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Figure 2-2: Single Scatterer Geometry
(Cross-Section)
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v = ‘pi + ¢'5 ’ Lu’i =49 (2-2-17) .

Substitution of Equation (2-2-17) into Equation (2-2-13) gives the ;3§
equation for the scattered field, viz. A
Lvg * goq ' Geg = V¥ (2-2-18) 2

The equivalent sources that generate the scattered field, geq' are ‘b:
given by Vy. The transition operator T can now be defined as ;
Yoq = TY, (2-2-19) j

From the above equation, it is seen that once the incident field is @K
specified, the induced sources can be calculated if T is known. }3
Since bounded wi yields bounded induced source distributions, this g
inplies that T is a bounded operator. As a result, T can be repre- %
sented in integral form as ~

- ‘l\

Jeq(Xe) = Idﬁ{:t (%o %0 )95 (x¢) (2-2-20)

The kernel t(x,,X;) is analogous to the time-varying impulse re-
sponse h(t,7). One can show that t(x,,x;) = 0 for x, or «/ outside
of Sp. This just means that the equivalent sources are located

within the boundaries cf the scatterer.

In tne low-frequency case, where the wavelength is large com-
pared to the characteristic size of the scatterer's cross-section,
the equivalent source distribution looks like a line current. 1In

tf this case, the transition operator's kearnel can be written as
7 t(x,ox0) = k3ad (x,)6(x)) (2-2-21)

R
»

. T T
3¢ BDARNY
Y - SO
. Al O

The introduction of the coefficient a is motivated by three-
dimensional scatterers for which a is the polarizability (57].

The scatterer can be characterized in an alternative manner \04
;, Ly specifying its far-field response to a unit-amplitude incident f
E. plane wave. If the incident plane wave is given by }
;- <
. - - 2 3 L[] - - .-1
- by (x,) = exp{-Jkoi-‘x, } (2-2-22) A
o then the scattered field in the radiation zone has the form "
o .
> ~
e v
:'.: 2-8 i
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~~~~~~~

exp{-jk.xt}

X

’ (2-2-23)

Vg (x,) = £(0,i) - x. = |x,|

where i and o (= x,/x,) are unit vectors in the direction of the
incident wave and the observation point respectively as is shown
in Figure 2-2. Equation (2-2-23) serves a3 a defining equation

for the scattering amplitude, £(o0,i).

The scattering amplitude and the transition operatcr are
related to each other. The relationship is

-3 74

2n?

T‘—-—e

£(0,i) = vE(ko0,kei)

’ Y (2-2-24)
where t(k,,k!) is the Fourier transform of t(x, ,x!) with respect

to X, and 5%, i.e.,

k

, - Iikeox, = kgoxp)
tk, ki) = (2m) 2 I dx,dx; t (x.,x{)e (2-2-25)

The relationship between f and t is derived in Appe&ndix B.

In developing the multiple-scattering equations the transi-
tion operator for a scatterer not located at the origin will be
needed. Denote the transition operator kernel for the jth scat-
terer by tj(gt,gé). It can be related to the transition operator
of the scatterer located a% the origin. If the jth scatterer's
center is located at Etj is measured from the origin, themn
by a sinple shift of the incident field and the induced charge, one
finds

where xt

=t)

PR 2P S T A L]

X

By (XpoXp) = BXeXy g, Xp-Xyy) (2-2-26)

Here t(x,,X;) is tile transition kernel for a scatterer located at
the origin. It should be noted here t is a function of aj - the
orientation angle of the jth scatterer.

2.2.3 Mean-Wave Equation

An approximate equation for the mean field can be derived
using the Foldy-lLax method [57). This method is valid in the
case of small fractional vulume.
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Consider the total field ¥ at some point x, to consist of the
incident field, ¥,, and the various scattered fields from the in-

dividual particles. i.e, LY
'
(3) ﬂ -
Y=y o+ i v, iy =g (2-2-27) 3
j"'l 1
- o
where V;J, is the scattered field f£rom the jth partizle. The tvan~

sition operator for the jth particle can then he used to relate the
jth scattered field 4o the incident field on the jth particle.
This is expresszd mathematically as

(3 L o) o om () 2-
LYS geq TjV (2-2-28)

where Tj is the transition oparator for the jth particle and Y‘j)
is the field at the ilocation of ith partcicle vith the
:)!':h particle remo“ed. Substituting Equation (2-2-28) into Eguation

(2-2-27) and multiplying from the left by L, gives the following

eguation
{

¥ (3)
LYy =g+ ) T,¥"I (2-2-29)
j=1 3

Averaging the above equation over the ensemble uf scatterer
configurations yields

N (3)
L<y> = g + ) <T,¥ s (2-2-30)
j=1

where the fact thet L is deterministic has been used. To obtain
an equation for the mean field <¥>, the Foldy-Lax approximation

'l'(j) P <'.y;>j (2-2-31)

VRN
L0 ST ey

is introduced. This sAays that the field incident upon the jth

scatterer is approximately equal to the mean field at the jth -~ !.:‘

scatterer. It can be shown by scaling techniques that this ap- lq

proximation is valid when the fractional volume occupied by the _j

=)

scatterers is small. Using this approximation 7
-

<T.?(j)> L TL<Y>> = CT.><Y> (2-2-32) %1

J j j 3 2

1

-

.o
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Putting this approximation into Equation (2-2-30) yields the
following equation for the mean field

L<Y> - {<Tj><Y§ =g (2-2-33)

The equztion for the mean field can be simplified by ex-
plicitly writing cut <Tj> and assuming that all particles are
identically distributed in location and orientction. Doing this,
the expression for <Tj> becomes

<Ty> = [ ds, Izwdop(gt,o)rj(gt,e) (2-2-34)
s 0
where p(gt,e)dg_tde is the joint prdbability that the position
vector X, will take on a value close to s, and simultaneously the
- orientation angle © will take on a value clcse to 6. Note that
the average is identical for all particies since the probability
density is independent of J.

\ Before proceeding, Equation (2-2-34) can be written in a
o sonewnat more convenient form by asuppressing the orientation
average and writing

T TPTTE

<Ty> = J ds,p(s, )T, (3,) (2-2-35)
|® ’
q where "f(g_t), the orientation average over 6 at a particular 8¢ R
i is given by
t N 2 o
|~ T{s,) = I d.ep(elgt)'r(g_t,e) (2-2-36; "j
) 0 :
: A simplified equation for the mean can now be written. Using N
Equaticn (2-2-35) in Equation (2-2-33) and noting that the terms
E.' of the sum are identical gives '
\
; L<yY> - J d_s_to(gt)f(g_t)db =g (2-2-37)
‘ s
E“ where the number denaity of the scatterers p(s,) is just
]
: p(s,} = Np(s,) (2-2-38)
:
|
|
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The notation in this equation can be simplified by defining the
mean wave operator £

£=1L- I ds, o(s, )T(s,) (2-2-39)
s

Eguation (2-2-37) then becomes

£<¥> = g (2-2~40)

The mean equation as given above is in its most compact

form. For later use, it will prove expedient to write it in tae
more explicit form

(V2 +k3) <¥(x,) >+Idgtp(g_‘) Idlit(it'!t'it.:'it) <Y (xy)>=-g(x,) (2-2-41)
s
This equation is an integro-differential equation; however, it
is deterministic and not random. Further, the egquation substan-
tially simplifies in the case of dipole scatterers as may be seen
by substituting Equation (2-2-21) into Equation (2-2-41) to obtain

[R2+k2 (1 +p(x, )a)<¥(x.)> = -g(x,) (2-2-42)

where it is understood that p(x, ) =0 for x outside of S. This
simplification is possible, however, only at low frequencies
(large wave lengths) where the incident field is essentially con-
stant over the scatterer. Since this low-frequency approximation
involves the assumption that the incident wavelength must be large
compared to the size of the scatterers, scattering from resonant-

size scatterers must be treated by the more general mean Equation
(2'2-‘1) -

2.2.4 Space-Frequency Correlation Function

A basic quantity of interest for characterizing such com-
munications channeis as the forest medium is the space-frequency
correlation function of the scatterer field, <W(§t,w)w*(gt,&).

Thig is the ensemble average of a field component at X, and angu-
lar frequency w times the conjugate of the field component evaluated
at gt and ©. At a fixed point (gt'gt), the resulting frequency
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correlation function indicates the effective bandwidth, and its
Fourier transform gives the delay spread. At a fixed frequency
(w=k), the width of the spaze correlation function indicates the
minimum separation required for efficient space diversity.

In Section 2.1, it was pointed out that if the medium was
mostly absorptive in nature rather than scattering, the space-
frequency correlation function can be obtained as in Equation
(2-1-3) by way of the mean field as follows

YR, W) ¥* (R, /D) > = <Y (X ,0)><Y* (X, ,0)> (2-2-43)

In general, hovever, as the frequency increases, scattering be-
comes more impcrtant and Equation (2-2-43) no longer holds. The
correlation of the field must then be obtained from first princi-
ples as in the case of the mean.

An equation for the correlation can be obtained by parallel-
ing the development of the mean wave equation. The eguation must
again be derived under the assumption of small fractional volume.
However, there is no restriction on the absorptive or scattering
properties of the particles. Because of the amount of technical
detail involved, thLe derivation of this equation has been rele-
gated to Appendix C.

The correlation equation obtained in Appendix C is

LEr<YY*> - I as, o (s, )T(8 )T (8. J<¥¥*> = gg* (2-2-44)
8
where
_ _ 2%
T(8,)T* (g, ) = ! dep(elﬂt)Tj‘!t'e)TS(it'e’ (2-2-45)
0

Note that, as in Equation (2-2-43), the unstarred and starred
quantities are functions of unhatted and hatted gquantities, re-
spectively. The mean operator £ is given in Equation (2-2-39).
The correlation equation can be put in a slightly different form
by multiplying from the left by g1

£*~1 where the inverse mean
operator £ 1 is given by
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5'10(5t) = Idggc(gt.gg)W(gg) (2-2-46)

and the kernel of the integral operator is the mean Green's func- -
tion which satisfies i
N
tG(xt.xt) = 6(x t (2-2-47) “;
¥
The result is )
2 <YYE> = <Y><YE> - t-lt‘-ljdgtp(gt)T(gt)T*(!t)<YY*> (2-2-48)

o

&
g

b s
f‘ This is equivalent to the correlation equation given by Ishimaru

[S5]), although his equation is given for the three-dimensional
scalar case.

P As in the case of the mean, Equation (2-2-46) will now be
- written out more explicitly

<H(x I¥* (k. )> = <¥(x,)><¥*(x, )>

- de'dxgdxédxzdstp(s )G(xt.x )G* (xt,xt) (2~2 -49)

*t(ax’ e t'xt st)t*(x 't'x ) <!(x )?(x )>

In the above equation it has been assumed that w = @ and then this
variable has been suvppressed.

As in the case of the mean-wave equation, when the frequency
is low, the correlation Equation (2-2-49) can be substantially
simplified. By using Equation (2-2-21) in Equation (2-2-49), it
is found that

<w(§t)v*(gt)> = <Y (x,}><¥*(x!)>

E . (2-2-50)
3 k*lal? s . <

; kelal jdgtp(g_t)s(gt.g_t)c*(gt.gt) <¥(3,)¥*(8,)>

v s

;; The solution to this equation will be found in Chapter 7 for an

B untounded medium (S = ) with constant density p and x, = X,

&
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2.3 Three-Dimensional Scattering Media

2.3.1 Model Formulation

In the preceding section, equations were derived for the
mean and correlation of the field in a medium of two-dimensional
scatterers. Attention will now be focused on ensembles of three-
dimensional scatterers. These scatterers will be used to model
leaves and branches. Because of the three-dimensional character
of the scatterers, the problem can no longer be scalarized, thus
the vectcr wave equation must be used.

The configuration of scatterers to be discussed is shown in
Figure 2-3. There are N identical, nonaligned scatterers contained
within volume V. Each scatterer has volume vp and relative di-
electric constant ep. A deterministic background medium is also

assumed to be present. The relative permittivity of the composite
medium .s given by

N
e(x) = e (x) + ] Xy (x) (2-3-1)
=1
wvhere  (x) is the relative permittivity of the background medium

which is assumed to be unity inside V and arbitrary outside V,
i.e.

1 + X inside V
Eb(z) = (2-3'2)
€, (x) . X outside V

By appropriately choosing V and Eb(f)' a half-space or slab con-
figuration of scatterers can be constructed. In addition, the
grcund can be accounted for through the background medium. The

X;(x) used in Equation (2-3-1) is the susceptibility of the jth
scatterer. It can be written as

X5 (x)

J—

Xy » X inside jth scatterer
= { (2~3-3)

0 , x outside jth scatterer

Here, as in the case of the two-dimensional scatterers,'xlis the
bulk susceptibility of the scatterer material.
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A vector wave equation for the electric field can be obtained
by using Equation (2-3-1) in Maxwell's equations as given by Equa-
tion (2-2-1). The resulting equation is

N
VXVXE - ke, (2)E - j{l kiXy (XE = ~Juued (2-3-4)

An operator notation is again introduced. By using the fol-
lowing notation

L = Vx(VxI) - ki (x)1 (2-3-5)
Y = k2 -3

¥y = kX (x01 (2-3-6)
Y=E g = -juped (2-3-7)

Equation (2-3-4) can be written as

&-ly)-¥=g (2-3-8)
j

The double underlined notation is used to signify a dyadic; thus
L and !i are dyadic operators. The unit dyadic I has been intro-
duced in the definition of L and gj. Ag its name indicates, it
has the property that I-Y=Y-I=Y [see Appendix D). This pro-
perty is used to reduce the abstract form of the vector equation

as given in Eguation (2~3-8) to the standard form as given in
Equation (2-3-4).

One of the principal advantages of the abstract operator no-
tation is now evident. A comparison of the vector wave eguation
as given b7 Equation (2-3-8) with the two-dimensional scalar wave
equation as given by Equation (2-2-10) shows that the two equations
have basically the same form. Thus derivations carried out in the

vector case will paralle]l those already performed in the scalar
case.

2.3.2 Single-Scattering Problem

Before a mean equation can be derived for the fiesld, the
scatterers must be electromagnetically characterized. The dyadic
transition operator and the dyadic scattering amplitude can be

2-17
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used for this purpose. The development in this subsection paral-
lels the development for the scalar two-dimensional problen as
given in 2.2.2.

Consider a three-dimensional scatterer located at the origin.
The electric field y satisfies the equation

where

Vo= kX(x)L (2-3-10)
and L, g are defined in Equations (2-3-5) and (2-3-7) respectively.
Here, as before, X(x) is X, inside the scatterer and zero outside
the scatterer. The orientation of the scatterer as specified by

the polar angle 6 and the azimuth angle ¢ is contained implicitly
in the definition of X(x), i.e., X(x) =X(x,6,%).

To define the transition operator, the field is broken up into
a free-space component ii and a scattered component !s so that

V= Y (2-3-11)

where L-V. =g and LYy =V Y. Here as in the scalar case, V-y can
be viewed as equivalent sources 9eq that create the scattered
field. The dyadic transition operator can now be introduced. This

operator acts on the incident field to produce the equivalent
sources; thus

eq © I- ﬂj (2-3-12)

Since the relationship is linear and bounded, Equation (2-3-12) can
be written explicitly as

geq(g) = Idy_t_:,(gg.y)-gj(x') (2-3-13)

where t(x,x') is called the transition operator kernel. The know-

ladge of t completely specifies the scattered field once the inci-
dent field is given.

The relationship between ii and geq is substantially simpli-
fied in the low-frequency limit. 1In this limit the induced source
distribution can be approximated by an electric dipole. Thus

el
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daq ™ ~Juledeq = ~Juleljuwps (x)] (2-3-14)

where p is the electric dipole moment of the induced source dis-
tribution and §(x) is the three-dimensional Dirac delta function.
The dipole moment p can be directly related to the incident elec-
tric field yi by the dyadic polarizability a. This relationship
is

B ™ €2 ° Yo (2-3-15)

Comparing this equation with Equations (2-3-12) and (2-3-13) the
transition operator and its kernel can be written as

T = kigé(x) (2-3-16)

and
t(x,x') = k2ad(xj3(x"*) (2-3-17)

The far-field behavior of the scatterer's response to a plane
wave can als» be useld to characterize the scatterer. Consider a

plane wave

kol -x

p; (x) = gfe™d (2-3-18)

incident upon the scatterer. Here g? is a unit polarization vector
and i is a unit vector in the direction of propagation. The scat-
tered field in the far-field zone of the scatterer is written as

-jkox
Yg(x) v £(0,1) - g} 9——;:— » o= (2-3-19)

|

where f£(o0,i) is the dyadic scattering amplitude. Here o0 is a unit
vector in the direction of observation and x= |x]|.

The scattering amplitude f can be understood more easily in
terms of its components. To dothis, incident and scattered polar-
ization vectors need to be defined. An arbitrary incident polar-
ization vector g; can be decomposed into two orthogonal components;
call them h? and v°; indicating horizontal and vertical polariza-
tion, respectively. Similarly, the scattered field can be decom-
posed into two mutual orthogonal components hg and vg. The no-

s
tation has been employed that a superscript zero indicates a unit

vector.
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By using the unit polarization vectors introduced abave *he
dyadic scattering amplitude can be written as

£ = fnhghf + fp hIvE + fpvghl ¢ £ vivD (2-3-20)

where the components qu are given by

fq=Rs-f°2f . pegelh,vl (2-3-21)
Thus if the incident polarization is horizontal, g; = g;, the
scattered far field will be

~Jkex
e
Y v (fppbg + fn¥g) —5— (2-3-22)

The dyadic scattering amplitude f can be directly related to
the Fourier transform of the transition operator. This relation-
ship is derived in Appendix A of Lang [57]). It is

£(o,i) = 2n*(I-00) - E(keo,koi) - (I-1 1) (2-3-23)
where
Ek ) = L Jdgt_dg';(ﬁ.g')ej (k-x-k'-x') (2-3-24)
(2m)

The relationship between f and t as given in Equation (2-3-23)
is in dyadic form. By using the polarization unit vectors already
defined, “he unit dyadic can be decomposed as follows

OR © Oy ©
;_sl_xsl_ls+vsvs+oo

or (2-3-25)

I=hfhi + w33 +id

This is a result of the fact that I can be decomposed in the above
form by any system of mutually orthogonal unit vectors. The scalar
form of the relationship can be found by dotting Equation (2-3-22)
from the right by g; or g; and by dotting from the left by g; or

g; and then using Equation (2-3-25). The result is

qu(g,_i_)=2ﬁzt~:pq(k,g.k.i) »  p.gelh,v] (2-3-26)

where tpq = pPg-k-qj -

Both the transition operator and scattering amplitude forms of
characterizing the scatterer are used. Usually the transition
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operator is employed in the derivation of approximate equations, iﬂ
while the scattering amplitude appears when these equations are ;f
solved. X
2.3.3 Mean-Wave Equation Qb

An approximate equation for the mean field will now be ij

given. The method for obtaining this mean field equation exactly
parallels the two-dimensional procedure as given in Section 2.2.3.
As a result, the derivation will not be given here.

Starting with the vector wave equation as given by Equation
(2-3-8), introducing the dyadic transition operator, averaging
and using the Foldy-Lax approximation, the three-dimensional
vector mean-field equation is found to be

pv> - [ ase@T@ > = g (2-3-27)
v

where f(g) is the orientational averaga for a particle located at

8, i.e.
n 27
I(s) = ] dﬁf d¢p(6,¢|8)T(s,6,4¢) (2-3-28)
0 ©

j® where p(9,¢) is the angular probability density function given the

particle is located at s. v
; 3
E As before, it will be of use to write the mean-field equation o
' explicitly. =quation (2-3-~27) becomes : L
s
} VXUX<E(x)> = klep (X)<E(X)> T
. _ ?‘7::.
: - J ds (s) pax'E(x8,x'~8") *<E(x')> = =Jup,J(x) (2-3-29)
! Equation (2-3-29) differs from the vectcr Helmholtz equation only 'f}
. O
: because of the added integral term arising as a result of the ‘5;
E scatterers. A similai” scatterer-related integral term is &also ;:
A observed in the case of two-dimensional scatterers [Equation ﬁﬁ
‘ (2-2-41)]. f?ﬂ
; e
. ]
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The mean-field equation can be substantially simplified in
the low-frequeacy (Rayleigh) regime. This is easily shown by
substituting Equation (2-3-17) into Equation (2-3-29) and obtain-
ing
VXVX<E> ~ kiley (x)I + paF<E> = -juwnod (x) (2-3-30)

In this low-frequency (Rayleigh) regime where the wavelength is
large relative to the size of the scatterers, it is apparent from
Equation (2-3-30) that solutions to the mean-field equation can
be obtained using classical techniques.

2.4 Three-Dimensional Scattering in Two-Dimensional Media

In this section, mean-wave propagation in a medium of two-
dimensional scatterers with three~dimensional sources g(x) is
considered. The egquation for the mean field is derived from the
three-dimensional mean-field equation given in Equation (2-3-29).
The scattering being considered differs from the two-dimensional
waves considered in Section 2.2 because it doesn't reduce simply
to a scalar treatment; in general the complete vector problem
must be considered. This results from the fact that three-

dimensional sources produce waves that travel at oblique angles
with respect to the scatterers.

The scatterers are characterized by the dyadic transition
operator t(x,x') as defined in Equation (2-3-13). Since the
scatterers do not vary with z, translations of the incident field
and of the equivalent or induced sources by the same amount in
any direction will have no effect on the transition operator;
thus t (x.,X{,2,2') is just a function of z-z' or

E(x,x') = £(x,,x!,z2~2") (2-4-1)

This is analogous to the impulse response of a time-invariant
filter; one obtains the same response independently of when the
impulse was applied.

Now using this two-dimensional form of t in Equation
(2-3-39),

s
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VXVX<E(x,,2)> = KJ<E(x,,2)>

s

* <E(x,,2)> = g(x,,2) (2-4-2)

Here it is assumed ¢, (x) =1, and for all x that the Rotal volume Vv
under consideration is an infinite z-directed cylinder having
cross~-section S. An examination cf this mean equation shows that
it is Fourier-transformable in the 2z direction. Introducing the
Fourier representation.

1 - ’jkzz
into Equation (2-4-2) yields

PxOx<E(x, ,k,)> - ki<E(x,.k,)>

- J dgto(gt)Jdgéﬁ(gt-gt.gé-gt,kz)

s
- <E(x).k,)> = g(x,.,k,) (2-4-4)
where 6==Vt - jkd£° Vt = x°9/9x + y°9/9y
~ jkzz
Lix..xi.k,) = Idzg(gt.§£.z)e (2-4-5)

The hat notation has been used to indicate a Fourier transform
with respect to z. The transverse density p(gt) is related to
p(g) as follows

Idszo(g) = deszp(g) = Np(8,) = p(s,) (2-4-6)

Thus p(gt) is measured in units of particles per area rather than
particles per volume.

As in the éase of scalar two-dimensional fields and vector
three-dimensional fields, the fields scattered by an isolated
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two-dimensional scatterer can be characterized by a scatt ring -
amplitude. The difference between this vector two-dimens onal -
scattering amplitude and the scalar case is that the direction
vector i of the incident plane wave of unit amplitude and polar-
ization g° is not necessarily perpendicular to the generating

-
-

S N

PP

KaCach e rar

element of the cylindrical scatterer (z-axis). The 4dyadic -
P scattering amplitude is defined in terms of the transformed 1
‘ scattered field as follows j
| . Jkex =ik, 2 J
:I eg(x..2) v £(0,i)g° (2-4-7) 1]
e /xt -

where _;
L i=4, +i,2° , i, =1 - z° (2-4-98) “Eﬁ
& G |

and '
g 0 = o +i,z° (2-4-9) :

The wavenumber in the z direction is kz-k.iz. This is deter-
mined wholly by the incident wave. Because of the two-dimen-
sional property of the scatterer, the wave number kz is preserved
by the scattering process; thus the scattered wave in direction

o must also have a z component i,. This means that scatteriag is

z
restricted to lie on a cone cf angle ei as shown in Figure 2-4.

Since hoth f and t describe the single-scattering process,
they should be related in a similar manner to the £ and t of the

-
[
F’ three-dimensicnal scatterers. In Appendix B, it is shown that B
[ .
< this is indeed the case. The result is =
b ' b
'\ s | - . ~ s . o3 3 A '1
L £(o,i:k,) = v(I-00)- t(k., 0, ,k i,:k,)-(1-11) | (2-4-10) *«11
F where y is given by Equation (2-2-24) and ﬁ:;
. (K, -, - ki -x0) ]
- X . _ 1 ~ . I(ke Xy = kypoXe AL ~
W L=
Y - 8
2-24 E
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These relationships will be used in Section 4 where expressions
are derived for the propagation constants of the mean wave in an
unbounded mredium of two-dimensional scatierers.
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Scattering Cone for Two-Dimensional Scatterers
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3.0 Dyadic Scatterina Amplitudes

The theciy of electromagnetic scattering presented in Section
2 azsumed the knowledge or availability of the dyadic transition
operators (t) or dyadic scattering amplitudes (f). It is the pur-
pose of this section to provide the dyadic scattering amplitudes
for trunks, branches and leaves.

For both two- and three-dimensional objects, the scattering
amplitude is determined by illuminating the object with a unit-
amplitude plane wave

= goe~Jke (i:X) -0-
E;(x) = g° -° (2-0-1)

where i is a unit vector in the direction of propagation and ¢°
is the unit polarization vector. The -i is often specified by

the spherical angles Oi and ‘i measured with respect to a polar
axis z. One can then write:

-i = x°sinb; cos¢; + y°sin6; sin¢, + z°cosf; (3-0-2)

Incident waves with both horizontal, g° =hy, and vertical g°=y?,
polarizations are considered. Here the horizontal polarization

vector Qi is taken parallel to the x-y plane of the forest floor.
Mcre specifically,
ixze
E{ .- —— (3-0-3)
[4 x z°|
The vertical polarization vector is taken perpendicular to both
i and h?; thus

vi =hixi (3-0-4)

For three-dimensional scatterers the dyadic scattering am-
plitude is defined by

e-Jke (0°X)
p 4

E (x) ~ £(o,i)-g° (3-0-5)

where o is a unit vector in the direction of the observation
point x. The o vector can be described by angles e. and ¢s
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measured with respect to the z and x axes, respectively. In terms
of these angles, o is written as

o = x°sinf_ cos¢, + y°sind, sin¢, + z°cosf (3-0-6)

The scattered wvave in general can have components in the horizontal
h®, and the vertical vZ directions. These scattered polarization
vectors are defined by

(3-0-7)

o o
ve=hgxo

As pointed out in Section 2, f(o,i) has only four components
since 0-£(0,i) =0 and f£(0,i)-i=0. Thus,

£(2i) = fphghs + fphlvi ¢ fvind ¢ fvive  (3-0-8)

The dyadic scattering amplitude for two-dimensional scatterers

is identified as the coefficient of a cylindrically-expanding wave:
e-Jko(0-Xx)
Eg(x) v £(0,1)-g° (3-0-9)
vx

where es = w-ei. This restriction on the angle 98 results from
the requirement that scattered fields have the same variation in
a as the incident wave. This means that o must lie on the sur-
face of a cone of angle ei.

3.1 1Infinitely-Long, Circular Cylinder (Tree Trunk)

In this section, the dyadic scattering amplitude for an
infinite circular cylinder of radius a and dielectric constant
€y is given. Assume that the axis of the cylinder is the polar
2 axis [Refer to Figure 3-1]. There is8 no need to find the
scattering amplitude from first principles since the required
results are given by Wait [82) and summarized by Ruck et al.
[78]). These results are:
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j n/e = jn(e,-9,)
£ o(0d) =J2 & —— § (-1"EPe’ 1 8, pein,v)
PP == v /K 8ing; n=-=

j n/4 = in(é;-6.)
£.(0,i) = -, _(o,i) =_|< -& . (-1)"C e 8
vh'= hvi=r= nn?,?mqn.z,-., n

where

2 (2)
v o _ VnPn ann(xo)Hn

_ (2)
P N, [ann2 (xo)Jn(xl)]2

(xo)J;(xl)

- (2)
chh _ _ MaMa9n7y (%o Hy® (%) 35 (x,)

(2)
PnNn-[ann2 (xo)Jn(xl)]2

o]]
"

:E [ SOQnJ; (xl) ]
n ™%X (2)
0 pnNn-[ann’ (x4) 3, (x,)1%

koa

- ey
X, k,a/Ez cos?6,

_ COx _ 1 1
Sn kva €,-cos?8 sin?e
° L i i
Vn = 839n (7. oq(x)) - 8T8 (%5) 0, (x,)

P = rlﬂéz)(xo)Jﬁ(xl) - soﬂéz"(xo)Jn(xl)

(3-1-1)

(3-1-2)

(3-1-3)

(3-1-4)

(3-1-5)

(3-1-6)

(3-1-7)

(3-1-8)

(3-1-9)

(3-1-10)
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Figure 3-1: Infinitely-Long Circular Cylinder
Scattering Geometry
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N = 5,52 (x )3t (x)) - sqH 2 (%) T (x)) (3-1-11)
Mh = rlJn(xo)Jﬁ(xl) - soaﬁ(xo)Jn(xl) (3-1-12)
PY— o = — % (3-1-13)
0 = sinf 1 'W

1

ry \3-1-14)
e ~cos2H .
€y CoSs ei

with Jn(-) being the Bessel function of order nn and Héz)(o) being
the Hankel function of the second kind of order n. The primes

over the cylinder functions mean derivatives with respect to their
arguments.

An examination of the results shows that, in general, scatter-
ing from the cylinder gives rise to depolarization since fhvylo.
It should be noted that this depolarization does not exist when
the incident wave is normal to the cylinder (6i==w/2) because
then qn-=0. The cross-polarized terms are also zero in the for-
ward-scattered direction. 1In this case, 8_=0,+7 which leads to

(vh) _ _.(vh) 8 i
Cn ==--C"_n (n=1,2,...) and C0=0. Thus,

£ (ird) = =£, (i,1) = 0 (3-1-15)

3.2 Finitely-Long, Circular Cylinder (Branch)

Consider a planar electromagnetic wave to be incident upon a
finjtely-long, circular cylinder of complex relative permittivity
€y o Without loss of generality, the longitudinal axis of the
cylinder can be taken as inclined to the z-axis by an angle 9,
and the plane defined by the cylinder axis and the z-axis as ro-
tated an angle ¢ from the x-z plane (refer to Figure 3-2]. An
incident electric field of unit amplitude can be represented as

3-5
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Finitely-Long Circular Cylinder
Scattering Geometry

Figure 3-2:

.....

A A alimas

a _a

CIREIRPR WY T SR Sy




‘

ﬂ
+
>
i
|
1
N
|
d
]
]
]
B
¥
K
K
'
1"
:
f

[

-jk, (l'!)

. , . R - o
N ‘ . M N . - . . . ’
IS VORI D SRR RISy ey e

E; (x) = g°e (3-2-~1)
where
ke = w/hge, (3-2-2)
-i = x°cos¢; sin6, + y°sin¢; sinf; + z°cos8; (3-2-3) ‘!ﬁ
x = x°x + y°y + z°z (3—2»2)

and ei is the angle between the direction of the incident wave,

and the z-axis, and wi is the angle between the plane defined
by i and the z-axis and the x-z plane.

If the cylinder is sufficiently long, and thin in comparison
to the wavelength within, the induced electric field E; within
the cylinder may be ascertained using quasi-static techniques.
Under this approximation, the electromagnetic boundary condition
requiring the continuity of the tangential field components (E
and H) can be employed to show that the induced electric field
component directed along the axis of the cylinder is given by

I° - Eg=x° - E (3-2-5)

whereas the induced electric field component normal to the axis
of the cylinder is given by

= 2 -2
£°x§g‘£°x§i(g'—r[) (3-2-6)

where r°, a unit vector directed along the axis of the cylinder,

L ad A0 28 m Be g A a4 L h o g g T g gk

is given by ;gj

r°® = x°cos¢ siné + y°sin¢ siné + z°cosé (3-2-7) Iﬁﬁ

- As a consequence of Egjuations (3-2-1), (3-2-5), and (3-2-6), the qg
induced electric field within the cylinder may be shown to ke fﬂ

. o
As a consequence of the radiation condition, the electric :ﬁﬂ

field E in free-space attributable to the current distribution J s

within the closed volume V, is given by -ﬁé

. *4
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4
E(x) = -jwu.I dx'G(x,x')-J(x') (3-2-9)

Vp {,%

where G(x,x') is the free-space dyadic Green's function [126]. :

Although the total current induced within the finite cylinder 3

is A=

Jd = jwe,elgi (3-2-10) &

that part of the total current responsible for the scattered
field Eg is only

Jg = jwe,(ez-l)gz = jme,ngl (3-2-11)

where xz is the susceptibility of the cylinder. Substitution of
Equation (3-2-11) into Equation (3-2-9) provides the following
relation between the field Eg. scattered by the cylinder and the
field E, induced within the cylinder

Eg (x) = kﬁxzj dx'G(x,x') -E, (x') (3-2-12)
\'
P
The far-field free-space dyadic Green's function is given
by
' e~ ko [0 (x-x')]
% G(x,x') = (I1-00) v x (3-2-13)
:& with
F; o = x°cos¢, sinb  + y°sin¢, siné, + z°cosf (3-2-14)
E! Substitution of Equations (3-2-8) and (3-2-13) into Equation %
Ry (3-2-12) yields 3
N 3
2 -jk.,x o .
e -
!! E_(x) = £ - g° &—— (3-2-15) 7
where £, the dyadic scattering amplitude, is given by v
- jkAz u*;
l~. < = - . 2 - e - 1 g, P :
:v»--.- £(_o_l£) B(_I- 99) [£°£° + (-e—zj—r)(.I_ £°£°)] —"‘—IJ-kT—— (3 2 16) .:\
v "
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and =
‘ kA = ko(_o_ - !-_) . E‘ (3-2‘17) ea‘
n :t::i
] B = (7X,) (ra?) (k,/2m)? (3-7-18) &
] %
® 3.3 Circular Disc (Leaf) .“’
E Consider a planar electromagnetic wave to be incident upon a
y circular disc of radius a, thickness t, and complex relative per- .1
I. mittivity e " Without loss of generality, the orientation of the ﬁ
disc can be defined in terms of the two eulerian angles 6 and ¢ D
shown in Figure 3-3. An incident electric field of unit amplitude i
can be represented as i
. widd
¢ E, (x) = goe™ ke (1-X) (3-3-1)
: where
)
'. ko = w/lg€, (3-3-2)
T-. =i = x°cos¢; sinb;, + y°sin¢g, sin®; + z°cosf; (3-3-3)
:
® X = x°x + y°y + z2°z (3-3-4)
, and 6, is the angle between the direction of the incident wave and 'ff:_.
[ the z-axis, and Oi is the angle between the x-z plane and the
' plane defined by i and the z-axis. o
[
bt If the disc is relatively thin (a>>t) and the radius large in .:i
E comparison with the wavelength (a>>1), the induced electric field ::i::i
E, within the disc may be approximated by the electric field in Z;E;:
an unbounded slab having the same orientation as the disc. Under "«'4'"-‘1
" this approximation, the electromagnetic boundary condition requir- "1,
! ing the continuity of the tangential field components (E and H) ‘
I across an arbitrary interface can be employed to show that the }
' induced electric field within the disc is given, approximately, by !:j
- >
| ~3ko (1, *X) =
Ez(l(_) = E(n)e (3-3-5) :-:::1
::j:-!
* *
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Figure 3-3: Circular Disc Scattering Geometry
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The unit polarization vectors.appearing in Equation (3-3-6) depend
upon the relative orientation of the disc. As a consequence

(i, x n°)
h$ T, x| (3-3-11)
g; = = ‘
v h xi° (3-3-12)
and i, = [i, *1n°(c, - iD)¥//E; (3-3-13)
The amplitudes of the induced field components, e;, are given by
. tge-jk(l:-k,)t/z
q
e; = rqe;e'j'(t (3-3-15)
where
(£,-i2)% - (1-i2)™
(r, 2 —x —x (3-3-16)
(El-it) + (l'it)
r = =
q
(eg=i2)% - e (1-12)7

r (3-3-17)
v (e,-i2)% + g, (1-i2)

3-11
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.._n
where, :
+_3jxn - =jkn i
E = ° ° P P S
E(n) greqe + qlege (3-3-6) o
and
n°® = x°sin¢ sin® - y°cos¢ 8in6 + z°cos® (3-3-7)

i, =i~ (n° - i°)n° (3-3-9)

= - 2y C = 14 CaL
k= koley = 1) . i, = |i.] (3-3-10)
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2(1-12)"
(3-3-18)
" (e,-12)% + (1-12)®
tqs =
2/e] (1-11)"
t, (2-3-19)

(€,-i2)% + ¢, (1-12)%

As a consequence of the radiation condition, the electric field
scattered by the disc §s and the electric field induced within
the disc E, are related by the Kirchhoff integral

E (x) = x.’,x,] ax'G(x,x") -E, (x") (3-3-20)

p

where G(x,x') is the free-space dyadic Green's function and Xg
is the susceptibility of the disc (Xz =€y - l). The far-field
free-space dyadic Green's function, needed to find the dyadic
scattering amplitude f which has been defined so that

e-jk,x
E,(x) =£ g = (3-3-21)
is given by
: eIk lo- (x=x"))
G(x,x') = (1-00) s (3-3-22)

If Equation (3-3-20) is generalized to accommodate a dyadic field
representation so that

Eg(x) = kﬁxzj ax'G(x,x')-E, (x') (3-3-23)

Vp

then it is apparent from Equations (3-3-21), (3-3-22), and (3-3-23)
that

£lo,i) = (1X,) (k./2w)zI dax' (1-00) - Eq (x")e¥e (@XN) (335,

Vp

and where, as a consequence of Equation (3~3-5)

E (0 = [g'ed" 4 gmemIKM)gIko (e X) (3-3-25)
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with

e’ = e;jhon® + elvove (3-3-26)
Substituting Equation (3-3-25) into Equation (3-3-24) and intro-

ducing the identity

© =0, + (0-n®)n° (3-3-27)
|®
, yields
f(c,i) = (ﬂx,') (kg/Zﬂ)zj dx'(I1-00)° [e+ej|<n + e e I
: v
* P
. IkYy - x’
. eikelo:n®) | 7=t (3-3-28)
where
’b‘ = - -
‘ Ve =0 - i, (3-3-29)
For a circular disc of radius a and thickness t, Equation
(3-3-28) can be evaluated directly to obtain
@
£(o,i) = (ﬂxz)(k./2ﬂ)2[(a/vt)Jl(Znavt)]
+_. + - -
* (I1-00) - [e sincé” + e sinch ] (3-3-30)
o where Jl(') is the Bessel function of order unity and

0 = (kot/2) [(0-n®!¥ (e ~i2)") (3-3-31)
lve| = vg = (ko/2m) (% + n?)*
£ :tcoselsinei sin(¢-¢i) + sines sin(¢-¢s)]
- sinelcosei + coses] (3-3-33)

n =sinei cos(¢-¢i) + sine8 cos(¢-¢‘) (3-3-34)

The dyadic scattering amplitude of the circular disc as
. given by Equation (3-3-30) simplifies substantially in the case
of an electrically thin disc where

Lt : 4 s L # . LI I A L e e e

. LR v 3 JE . o e AP . LI ERE I P N A . LI

N . o : - e R 1+ L S L ORI
L bt ik, PRI VRT WAE W N ) TR -~ PP 3
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In this case, the phase angles xt and 6 are small and Equation
(3-3-3C) can be approximated by

£(0,1)-q° = (mXy) (ky/2m) 2t [(a/v,)J, (2mav,)]
- (I-00)- [g° - oL (n°.g°)n°]  (3-3-36)
il-0c0 I+x, 2 n

For this thin disc case in the low-frequency (Rayleigh) regime
where, in addition to inequality (3-3-35),

a << A (3-3-37)

then avt = 0 and

X
flo,i)-g° = X t(ke,a/2)%(1-00)- [g° - 1—#"7 (n°-g°)n°] (3-3-38)

Note that in the direction of forward scatter where o = i,
bg = 7 = 6 . by = &5 + 7 (3-3-39)

Ve = 0, and Equation (3-3-36) for the electrically thin disc
reduces to the Rayleigh result of Equation (3-3-38).
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. 4.0 Coherent Forest Scattering R
i PY A physically appealing representation for the mean field can '.“
: be obtained by postulating that the mean (or coherent) field sat- o

isfies Maxwell's equation "in the mean” and that the ensemble of )
{ discrete scatterers can be replaced by an equivalent continuous }
'. medium described by an effective dyadic permittivity ¢, or alter- -
» natively, by an effective dyadic susceptibility X. Because X is {
! found to be directly proportional to the fractional volume occupied i
) by the scatterers, it is easily scaled with respect to the forest j
< ° density and therefore preferable to g¢ for characterization of the ’"‘1

equivalent continuous medium. In Section 4.1, general expressions
are derived which relate X directly to the dyadic scattering am-
plitudes £. In subsequent sub-sections, these expressions are
-employed to determine for tree trunks, for branches and leaves,
specific expressions for their respective effective dyadic suscep-
tibilities. These specific expressions are exemplified by calcu-
lations which are then compared with experiment. It may be noted

° that, as all forest constituents are assumed uniformly distributed
about the vertical, the equivalent continuous medium is uniaxially
anisotropic.

Plane-wave propagation within an unbounded, equivalent con-
tinuous medium is considered in Section 4.2. Here, a general
dispersion relation is derived relating the plane-wave propagation
constants k of the mean (or coherent) field and the dyadic scat- §
tering amplitudes f. In subsequent sub-sections, this dispersion 1%5
relation is employed to determine, for plane-wave propagation l.{
through an unbounded forest of tree trunks, branches, or leaves,
specific expressions for the wave-propagation constant. The imag-
inary part of the wave-propagation constant, the specific attenua- =
tion, is numerically evaluated and compared with experiment. !,.,

L

|
V
:
;

Experimental verification of the electromagnetic model and, 3
ultimately, prediction of radio system performance requires the
identification of measurable guantitative parameters to charac-
terize the forest. In Section 4.3, some of these parameters are
identified and related directly to the specific attenuation.
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4.1 Effective Dyadic Permittivity of the Forest

The mean electric field propagating within an unbounded en-
semble of three-dimensional scatterers can be determined, as shown
in Section 2.3, from the mean wave-equation

L-<E(x)> - Jdio(s) fdi'z(z--eoa'-g)'<§<§')> = -jouod(x)  (4-1-1)
where

L = VxVxI - kJI (4-1-2)

From the physical viewpoint, a more appealing representation of the
mean field can be obtained by postulating that the mean field sat-
isfies Maxwell's equations in-the-mean and that the ensemble of
discrete scatterers can be replaced by an equivalent continuous
medium described by an effective dyadic permittivity g. If
Faraday's lzw

VX<E(X)> = =jwu,<H(x)> (4-1-3)

is substituted into the first term of Equation (4-1-1), then

Vx<H(x)> = jueo [LI-<E(x)> + I"ép (s) Idi'!-.(é'ifﬁ"i)
ko

« <E(x')> + J(x)] (4-1-4)
and, by Ampere's law
Vx<H(x)> = jw<D(x)> + J(x) (4-1-5)
it follows that

D> = ealL<EG@> + L [asotw [ax't s xrn)

* <E(x')>] (4-1-6)

Taking the Fourier transform with respect to x transforms Equation
(4-1-6) into

<Blk)> = €q [1-<E(k)> + L f"so(z) f dx'E(k,x'-5) - <E(x')>e%'2  (4-1-7)
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The second integral appearing in Equation (4-1-7) may be recog-
nized as a convolution with respect to the parameter s; as a
consequence

B> = eolr<E®> + 2 [aso(e) [k ik
ko

. <E(k')>ed (Kk') -8, (4-1-8)

If the number density p(s) is independent of location so that
pig8) = p (4-1-9)

then the order of integration in Equation (4-1-8) may be inverted
with the result

<D(k)> = €,[1 + E"—l-sﬁ £(k,k) ] <E(k)> (4-1-10)
ke

The constitutive relation

D=c¢cog ° E (4-1-11)
indicates that Equation (4-1-10) may be re-written in the form
<D(k)> = €,8 * <E(k)> (4-1-12)
and that
e=1+ -‘-3;’—212 £ (k k) (4-1-13)
°

is the effective dyadic permittivity of the equivalent continuous
medium. Note that ¢ depends upon the direction of propagation
through the wave vector k; such a medium is termed spatially dis-
persivet Because ¢ is a dyadic, the medium is termed anisotropic.
It is also interesting to note that, far from the source where the
mean field <E(x)> is essentially planar, only those components of
€ which are orthogonal to the direction of propagation will be of
significance. This is consistent with the relation established in
Section 2.3 between ﬁ and the dyadic scattering amplitude of £
[refer to Equation (2-3-23)].

In the low-frequency (Rayleigh scattering) limit, where each
scatterer can be represented as an electric dipole with dyadic
polarization a, the Fourier transform of Equation (2-3-17)

*Landau and Lifschitz.
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E(k,k') = k2g/(2m)? (4-1-14) N

can be substituted into Equation (4-1-13) to yield z
£= I + pg (4-1-15) g

in the Rayleigh regime. Note that in the Rayleigh regime, R
£ is no longer dependent upon the direction of the wave vector .j
k: however, the medium can be anisotropic. ‘bﬁ

The effective dyadic susceptibility can be defined as R

X = g-1 (4-1-16)
so that, in general, as a consequence of Equation (4-1-13)

x = 2070 (x,x) (4-1-17)

However, in the Rayleigh regime, as a consequence of Equation (4-1-15) 5

X = pu (4-1-18) v
It is apparent from Equations (4-1-17) and (4-1-18) that the ef-
fective dyadic susceptibility is directly proportional to the num-
ber density of the discrete scatterers. PFor this reason, X is
often preferred over ¢ for the characterization of the equivalent vy
medium. Because of the assumed exp{jwt} time-dependence of all
field quantities, it proves convenient to define the real and
imaginary parts of y so that y = x-jx"

In general, the effective dyadic sysceptibility )y can be
written explicitly in terms of the unit vectors h°, v°, and i°.
Here, i® is a unit vector in the direction of propagation and h°
and v° are the polarization vectors. 1In component form, ) is

x = z x BGOB’ ’ G’B.C{}_l_.'v°pi°} (4-1"19)
a®ge * -
There are nine components. However, only Xhh, xhv, xvh, and Xyv :
are important. The other components are either zero or do not "1
contribute at this level of approximation. These four principal
components of the effective dyadic susceptibility can be deter-
mined directly from the components of the dyadic scattering ampli-

)

tude £. Equations (2-3-2G), (4-1-~17), and (4-1-19) yield v
‘ e S——
Xpq 'kﬂ: £oq(ird) p,ge{h,v} (4-1-20)
4-4 “#
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The development presented above leading to the concept of an
effective dyadic permittivity was predicated upon the mean-wave
equation for three-dimensional scattering from three-dimensional
scatterers [Equation (4-1-1)]. An analogous result, the mean-
wave equation for three-dimensional scattering from two-dimensional
scatterers, was developed in Section 2.4 [Equation (2-~3-29)]. Aas
a consequence, an effective dyadic susceptibility for a continuous
medium equivalent to an unbounded ensemble of two-dimensional scat-

terers can be analogously defined with the effective dyadic sus-
ceptiblility given by

= (2m)3?p ¥ ) -
X —k—zﬁg(kt,kt,kz) (4-1-21)

Here again only the xhh' xhv. xvh and xvv components are important.
They can be directly related to the four components of the two-
dimensional dyadic scattering amplitude by employing Eguation (2-
4-10) in component form. The result is

Xog = UL E LD, eacih,v) (4-1-22)

£
Pd Yk: | °

where vy is given in Equation (2-2-24).

4.1.1 Effective Dyadic Susceptibility of Trurks

The radiowave propagation model developed in this report
views the forest as a random ensemble of tree trunks, branches and
leaves having prescribed location and orientation statistics. Tree
trunks are modelled as vertical lossy dielectric circular cylinders
of infinite length. The salient scattering properties of individual
cylinders can be characterized in terms of the dyadic scattering
amplitude £ which was determined earlier in Section 3.1. The
effective dyadic susceptibility for an unbounded forest of tree
trunks can be found using Equation (4-1-22).

_ jpd (pp) T ~(PpP)
X__ = c +27) ¢ ,  pelh,v} (4-1-1-1)
PP (k.)zsinei ( ° nzl n )
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The cépp) are given by Equations (3-1-3) and (3-1-4). As was
pointed out in Section 3, there is no depolarization of the elec-
tromagnetic wave in the forward scattering direction by vertical
circular cylinders, i.e. £ _(i,i) = £, (i,i) = 0, thus

th = X¢h * 0 (4-1-1-2)

and the equivalent continuous medium for vertical trunks is uni-
axially anisotropic.

The effective dyadic susceptibility of tree trunks as ex-
pressed by Equation (4-1-1-1) is exemplified in Figures 4-1 aud
4-2 for the case of a radiowave propagating parallel to the forest
floor (ei=90°). These calculations are based upon a tree trunk
radius of 10 centimeters and a trunk number density of 1 trunk per
square meter. Three models are employed to describe the permit-
tivity of the wood [refer to Appendix A]), but only CyberCom model
III can be considered realistic. The horizontal components of the
effective dyadic susceptibility (denoted by xhh' in general, but
here for ei=90° by Xt) are shown in Figure 4-1; the vertical com-
ponent of the effective dyadic susceptibility (denoted by va, in
general, but here for ei=90° by X,) shown in Figure 4-2.

It is seen from these figures that the effective dyadic sus-
ceptibility X is relatively insensitive to the CyberCom model
employed for wood permittivity. Further, although the resonant
response apparent in these figures is not shown in detail (calcu-
lations having been made at 100 MHz intervals), it is clear that
for tree trunks of this (10 centimeter) radius, resonance plays a
major role in the frequency band 200 - 2000 MHz. In this frequency
band the real parts of the dyadic susceptibility (x&,x;) decrease
roughly as the square of the frequency; the imaginary part of the
horizontal component (Xg) decreases roughly as the two-thirds
power of the frequency; and the imaginary part of the vertical

component (X;) decreases roughly as the five-thirds power of the
frequency.

Tamir [107]}, concerned only with frequencies below 200 MHz,
has suggested that the forest could be represented by an effective
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scalar permittivity (e') of about 1.1 and an effective conductivity
(0) of about 10~‘*mhos/meters [refer to Figure 1-1]. The relations

Xt = ¢' -1 (4-1-1-3)
X" = g/we, (4-1-1-4)

can be used to deduce the effective scalar susceptibilities sug-
gested by Tamir; these susceptibilities are also plotted in Figure
4-1 and 4-2, It is apparent from these figures that the frequency-
independent value of X' suggested by Tamir differs significantly
from the inverse frequency-squared dependent of Xé, x; found by
CyberCom; the inverse frequency-dependent value of X" suggested

by Tamir is about cne order of magnitude smaller than the corres-
ponding values of Xg. X; found by CyberCom. Near agreement between_
X" and X!, X; could be achieved by decreasing the assumed tree
trunk number density from 1 tree trunk per square meter to 0.2 tree
trunk per square meter. Although nct shown in this figure, the
low-frequency (Rayleigh) behavior of the vertical component (Xé,
Xg) agrees with Tamir's model for CyberCom wood permittivity models
II and III. This Rayleigh behavior is also anticipated in the
frequency band 200 - 2000 MHz for tree trunks (and branches) of
extremely small radius (less than 1 centimeter).

4.1.2 Effective Dyadic Susceptibility of Branches

Branches are modeled as lossy-dielectric circular cylinders
of radius a and length 2. The salient scattering properties of
individual finite-length cylinders can be characterized in terms of
their dyadic scattering amplitude £ which is given in Section 3.2.
The component susceptibilities for an unbounded forest of branches
can be found by employing Equation (4-1-20).

The four components of the dyadic scattering amplitnde in the
forward direction o=i can be obtained from Equation (3-2-16) by
dotting it from the left and right with the horizontal and vertical
polarization vectors. Thus,
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Xy
| + 20097 (4-1-2-1)
L 2+X,

by
4

The mean scattering amplitudes are given by

— T 27 o
"pq(..].'.'i) = Io defo d¢p(el¢)qu(?_~1£) (4-1-2-2)

BRI
Rta adiste et s Sw

A

where p(6,¢) is the probability density function of branch inclin-
ations. If it is assumed that the branches are distributed uni-
formly in the azimuthal angle ¢ and that all have the same polar
angle eb then

N

ae
o

.
)

1

p(e,¢) = —m— (4-1-2-3)
27

Now, using i [as given in Equation (3-0-2)] in Equations (3-0-3)
and (3-0-4), the following expressions can be obtained for h?
and v?

h? = -x°sin¢; + y°cos¢; (4-1-2-4)
vy = -§_°cos¢i cosf, - y_"sinfbi cosai + g°sinei (4-1~2-5)

In addition r°, which is a unit-vector directed along the branch,
can be written as

- s

r® = x°sin¢ sin6 + y°sin¢ sin6 + z°cosb (4-1-2-6) !ﬂ

: When taese expressions for the unit vectors h?, v? and r° are @f
5 used in Equation (4-1-2~1) and the result averaged over the prob- ﬂi
. o
§ ability density function given in Equation (4-1-2-3) u,l4
: 7
E"‘ —— 2 x j-:.
b fop(icd) = ’-5-93) Xob| —2— sin?o, + —2 ] (4-1-2-7) oy
5 2 2(2+X,) 2+X -
: L L Y
] v 4
= B
n e
n o
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£_(i,i) = ( o ) Xo]————— (cos“8, sin“e -—

| + 28in®e, cos?8,) + —2 (4-1-2-8) i
i Y 24x i
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are obtained. The depolarized forward-scattering amplitudes both
average to zero so that

“l
4
4
R
Lt

fhv(il_j;) = fvh(i-_di_) =0 (4‘1-2-9)
° _
The foux principal components of the effective dyadic suscepti-
bility are then found by substituting the above results into
Equation (4-1-20) and obtaining
@ [ X
| Xpp = TXgPall|—2— sine, + —2 (4-1-2-10)
g(2+x£) 2+Xy
[~ xﬂ,
= 2 2 s 2 s 2 2
) va = 'anpa ]| ————— (cos Bi sin eb + 2s8in ei cos eb)
_2(2+x£)
+ 2 (4-1-2-11)
2+xz
o
th = th = 0 (4-1-2-12)
Thus the equivalent continuous medium for an azimuthally symmetric
@ distribution of branches is uniaxially anisotropic.

The effective dyadic susceptibility of the branches as ex-
pressed by Equations (4-1-2-10) and (4-1-2-11) is exemplified in
Figure 4-3 for the case of a radiowave propagating parallel to
- the forest floor (ei==90°). These calculations are based upon a
branch radius of 1 centimeter, a branch length of 1 meter, and a
branch number density of 1 branch per cubic meter. All branches

L - g Tt et e,
- N o P St
P LA - Y} Iy r
. AT KR R S

oo . . PR I R )
e e R R
o Lol . A

o
| are assumed to be inclined 45 degrees with respect to the vertical, i
A but uniformly oriented in azimuth. Three models are employed to
describe the permittivity of the wood [refer to Appendix A], but
only model IXI can be considered realistic. The horizontal
-
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and vertical components of the effective dyadic susceptibility
(denoted by Xhh and xvv‘ in general, but here for 64, =90° by Xt
and Xz. respectively) are shown in Figure 4-3. Assumptions im- @
plicit in the development of the thin-branch scattering model
preclude the consideration of branches of significantly greater
radius over the frequency band 200 - 2000 MHz.

a® aaa Ao

Lo

In the thin-branch frequency regime, the frequency behavior
f of the effective dyadic susceptibility is determined by the fre-
[ quency behavior of the susceptibility of a single scatterer. For
branches, this is clearly evident from Equations (4-1-2-10) and
(4-1-2-11), where the only frequency-dependent parameter is the
susceptibility of the wood XL. Furtherxr, since all three models

for wood permittivity satisfy the inequality [refer to Appendix
A)

A

&
SIS

X; << Xi = 39 (4-1-2-13)

it is apparent from Equations (4-1-2-10) and (4-1-2-11) that for
; branches

n

"
hh 2

‘nXEpazl[%- sin?e, + ,.,%-] (4-1-2-14)

n

X3 ﬂXEpazl[%- (cos®6; sin®6, +2sin®6; cos®@,) +2%] (4-1-2-15)
’ These eguations explain why the frequency behavior of X; and X;

shown in Figure 4-3 so0 closely reflects the frequency behavior of

; XE shown in Figure A-2 of Appendix A. Note that, in contradis-

'@ tinction to resonant scattering, scatterer dimensions do not affect

! the frequency behavior of X.

The effective scalar susceptibilities suggested by Tamir [refer :fﬁ
to Section 4.1.1] are also shown in Figure 4-3. These values appear ‘ff
g to be about one order of magnitude greater than the computed values 5l$
‘ of X. This disparity may be attributed to the fairly low branch
number density assumed for the calculations (1 branch per cubic
meter) and also to the fact that Tamir's value includes, not only
| ® the effects of branches, but all other vegetative components as M
well.

| @
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4.1.3 Effective Dyadic Susceptibility of Leaves

Leaves are modelled as lossy-dielectric circular discs.
The salient scattering properties of individual discs can be
characterized in terms of their dyadic scattering amplitude £
which is given in Section 3.3. The component susceptibilities
for an unbounded forest of leaves can he found by employing
Equation (4-1-20).

According to Equation (3-3-30), the four components of the
dyadic scattering amplitude in the direction of forward scatter
are

C iy = 2,.+ + " eineBT L Y
qu(i'i) ﬂxl(k,/zw) (epq gincd + epq sinc6 ) (4-1-3-~1)

where,
+

e;q = Bo . s: . go ’ P,QE{h,V} (4-1-3-2)
and all other parameters are defined in Section 3.3. The mean

scattering amplitude, averaged over leaf orientation and required
in Equation (4-1-20), is given by

—_— L 27
qu(i.i) = J dOJ d¢P(6.¢)qu(£.£) (4-1-3-3)
0
where p(0,¢) is the probability density function of the leaf
inclinations. Unfortunately, even under the assumption that
the leaves are distributed uniformly in azimuth so that

P(6,9) = 5= p(6) (4-1-3-4)
the expression
—c 1 (" 2m
0 0

is difficult to evaluate analytically because of the complex de-
pendence of qu(i,i) on the azimuthal angle ¢. Although it can
be shown on the basis of symmetry that the cross-polarized com-
ponents must average to zero so that
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fhv(lpi) = th(i'i) =0 (4-1-3-6)
u —
'J. the co-polarized components have beer obtained only by using nu- .J
? merical integration. Ej
f Explicit expressions for the averaged co~polarized components ﬁ%
'@ can be found, however, when the discs are electrically thin and '."ﬁ
satisfy the inequality 1
-
: kove, t << 1 (4-1-3-7) -
3

Then, according to Equation (3-3-38)

f_(i,i) = kea 2x tl1 - Xg (p°-n°)? (4-1-3-8)
ppdrd) = \787) Xy Ix, (B2

Using Equations (3-0-2), (3-0-3) and (3-0-4) to recast Equation
{(4-1-3-8) in terms of the angular variables , and substituting
the result into Equation (4-1-3-5) yields the following explicit
expressions for the co-polarized components

hd T 7 i koa\? [ Xg
- fhh(‘j-'"i') = (—3—) xﬂ.t l - T(IT)Q— Il (4-1-3-9)
: P TEEY (k a 2 ] x!. 2 2
fplird) = —-5—) Xpt LJI. - m (I,cos®d; + 2I,sin®6,) (4-1-3-10) .4
where, 9
m X
Il = Iodep(a)sinze (4-1-3-11) .:f:;';
T3
) i
I, = I dep(6)cos?s (4-1-3-12) R
:L 0 1
, The effective dyadic susceptibility for an unbounded forest i
5 of electrically thin leaves can be obtained by substituting .
!_‘ Equations (4-1-3-6), (4-1-3-9) and (4-1-3-10) into Equation (4- .“‘
- 1-20) and finding 3
S X, B
& xhh = wxzpazt l] - ——— Il] (4-1-3-13)
;-‘,‘ 2(1+X£) .:i
; Again it is seen that the equivalent continuous medium for an azimu- ',,5j
g thally-symmetric distribution of leaves is uniaxially anisotropic. -
b‘ .;i
b 4-15
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’ X,y = TXgpalt [1 - ﬂlx{'x?- (1,cos?8; + 2128inzei)] (4-1-3-14) —
4 iy
v = Xen =0 (4-1-3-15) ;.Et;
- subject to the condition k,/E; t << 1. Typically, leaves are no Ei

move than about 1 millimeter thick; according to Appendix A, ez=40. & o

As a consequence, Equations (4-1-3-13), (4-1-3-14) and (4-1-3-15)
should prove valid over the entire frequency band 200 - 2000 HMz.

The effective dyadic susceptibility of leaves in the thin-
disc approximation [Equations (4~1-3-13) and (4-1-3-14)] is exem-
plified in Figure 4-4 for the case of a radiowave propagating
parallel to the forest floor (ei-=90°). These calculations are
based upon a leaf radius of 5 centimeters, a leaf thickness of 1
millimeter, and a leaf number density of 200 leaves per cubic
meter, fairly typical values. The random orientation of the leaves
is described by a probability density function assumed to be uni-
form in azimuth, and uniform in elevation angle over the range
0-30 degrees (the leaves tend to be horizontal). Three models are
employed to describe the permittivity of the leaves [refer to
Appendix A), but only model III can be considered realistic. The
horizontal and vertical components of the effective dyadic sus-
ceptibility (denoted by xhh and xvv' in general, but here for -
6i=-90° by xt and Xge respectively) are shown in Figure 4-4. K
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The effective scalar susceptibilities suggested by Tamir 1
[refer to Section 4.1.1] are also shown in Figure 4-4. The agree- o !
ment between Tamir's values and those for X; based upon leaf ﬁ
permittivity models II and III for frequencies below 500 MHz is ]
remarkable. At higher frequencies, relaxation losses attributable X
to polarization of the water molecule [refer to Appendix I] are
likely to be appreciable, thereby invalidating both the Tamir

values and those computed on the basis of leaf permittivity model
II.

N4 u- e T,
. : L '

s A comparison of Figures 4-3 and 4-4 reveals that for the
- leaves Xg 2 xz whereas for the branches xt < Xg- This difference

- I
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is explainad by noting that, for the leaf and branch orientation
distributions assumed in the calculations, the leaves present
primarily a horizontal profile to a propagating radiowave (discs
with axes at 0° to 30° from vertical), whereas the branches
present primarily a vertical profile (rods at 45° that appear
vertical when in plane with viewer). Under these conditions, a
horizontally-polarized radiowave tends to be more susceptible to
the effects of the leaves, whereas a vertically-polarized radio-
wave tends to be more susceptible to the effects of the branches.

4.2 Plane-Wave Propagation

4.2.1 Dispersion Relation

The mean electric field propagating within an unbounded
ensemble of three-dimensional scatterers can be determined, as
shown in Section 2.3, from the mean wave equation

L-<E(x)> =~ Jdgp(g)Idz_c';(g-g.gs'-g)-<§(§')> = =jwHod (X) (4-2-1)

where

L = VxVxI - k3I (4-2-2)

Consicder the plane-wave

<E(x)>=E e JE'X (4-2-3)

to be propagating in a source-free region where

J(x) =0 (4-2-4)

Substitution of Equation (4-2-~3) and (4-2-4) into Equation (4-2-1)
yields, upon taking the Fourier transformation with respect to the

variable x

kX (K XE) +k§[£+gl{ [dgmg) [a;_-t‘_“‘m,g-“g) ejs-a]. E=0 (4-2-5)

Recognizing the second integral appearing in Equation (4-2-5) as
a convolution with respect to the parameter s and assuming
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the number density of the scatterers p(s) to be independent of
location so that

2T .o St e
arnee, ) NN
¥ N O N P

p(s) = p (4-2-6)
Equation (4-2-5) can be written as 1‘
\::1
2 s P T ' <2
Kx(kxE) + ko{l + (27)° =5 t(k,k) {- E=0 (4-2-7) D,
ko B

Because the fractional volume occupied by the scatterers is
assumed small [see Section 4.3], the second term in the square
brackets of Equation (4-2-7) is also small and perturbation tech-
niques can be used to find an approximate solution for E. For
ordering purposes, it is then convenient to replace p in Equation
(4-2-7) by ép and expand both E and k as power series in § so that

e R
AR I NI

’
J VOV G R

..'I

E=E + E + .... (4-2-8)
= (kg + 8k, + ...0)d (4-2-9)

Substituting Equations (4-2-8) and (4-2-9) into Equation (4-2-7)
and setting to zero the coefficient of each power of ¢ yields

Y, T,

21 . 2 = <D
kKolix (1xEj)] + koE 0 (4-2~10)

g and T
~ . . 2r2 . :7;_:
E: 2ok [ix (1xEp)] + kglix (ixE,)] ;:::i

2 3 . . . = ., ¢

i» + k3E, + (2m)*pk(xpi,kpl) - E; =0 (4-2-11) R

o ':‘T':

;: Equation (4-2-10) can be recognized as the free-space wave equation; \\1

g as a consequence o

: . o
L . -2~

v . Ej-i= 0 (4-2-12) .

. —

: ko = ko (4-2-13) 3

\ \.::-J

Equation (4-2-11) can be simplified by expanding the vector triple- =

;‘ cross products and using Equations (4-2-12) and (4-2-13) to obtain .‘i

: T— 7]

-2k.n<1_5_:o +k§(§l «i)i+ (2m) ’ ptkyi,koi) - E, = 0 (4-2-14) ;':-?j

2-51.1
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This vector equation is equivalent to three linear algebraic
equations and, in order for a non-trivial solution to exist, the
determinant of the coefficients must be zero. The vector wave
numbers (propagation constants) X satisfying this condition can
be determined by expressing E, as

Ey = (Ep-h®)h® + (E,-v°)v® (4-2-15)

and substituting Equation (4-2-15) into Equation (4-2-14) to obtain
the following dispersion relation for Ky
- s . £ s
2k,|<1 + (27) pt:hh (2m) pthv
- _ =0
(2m %o ton ~2kok; + (2m) o t oy

(4-2-16)

under the assumption that (gl « i) =0. The dispersion relation
can also be written in the form

kgnf - Bkok) +C =0 (4-2-17)
where

B = 2np[f'h; + fv";l (4-2-18)

¢ = (2m0) (EFD - B T (4-2-19)

and Equation (2-3-23) has been employed to express t in terms of
the dyadic scattering amplitude f. As a consequence of Equation
(4-2~-17), the allowable propagation constants are

% B :+ /BT - 4C

Ky = 2k, (4-2-20)
+ = TP F - 2 -2~
SRRl [Lr e PR et e et el NN TR
For classes of scatterers for which
?;; = Ih—v = 0 (4-2-22)
4-20
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(such as branches and leaves having azimuthally uniform orienta-
tion distributions),

+ . 270 Y
° Ky ¥ Kep %, £ (i,1) (4-2-24)

Thus, if 6p is now replaced by p (or, equivalently, § is set equal

to unity), Equations (4-2-9), (4-2-13), (4-2-23) and (4-2-24) can

be used to show that to first order in the perturbation parameter
® s,

=k, + £ ’ 4-2-25
Kp ° ‘F: PP ' pe{h,v} ( )
° whenever Equation (4-2-22) is satisfied.

For three-dimensional wave propagation in two-dimensional
media (refer to Section 2.4], a similar development can be pur-
sued to show that, in general,

e K =K. +k;z° , k, =kecos8, , Kk, =« i, (4-2-26)
where
= 20 | (F T £ _-f )2 -2~
kt = k,sinei
| and
- J—s— - X
: = 2n =] 1'/4 4-2-23
L Y _R-;_ e ( 23)
If
» !vh = !hv =0 (4-2-29)
(as in the case of tree trunks) then Equation (4-2-27) can be
simplified to
- - 21l P -2-
Kep = Ke * T"ppri_i')‘_ i . pei{h,v} (4-2-30)
e 4-21




4.2.2 Specific Attenuation

In general, the wave propagation constant ¥ has both real
and imaginary components so that

Kp = xé - jx; R pe{h,v} (4-2-31)
and, as a consequence,
-3ki(i-x) kP (i0x)
<E{x)> =Ee P e P (4-2-32)

The real part of the propagation constant (k') is expressed in
radians per meter; the imaginary part (KS), also called the
specific attenuation, is expressed in nepers per meter or, alter-
natively, in decibels per meter through the relation

a = (20109l e)r; ~ 8.686 x; (4-2-33)

Because the fractional volume occupied by the vegetation is small,
the real part of the propagation constant (xé) is dominated by
the free-space component (k,); this is shown in Figure 4-5. The
effect of the imaginary part (the specific attenuation x"), how-

ever, can be appreciable and is considered further in the following
sub-sections.

Some investigators [34, 35, 44, 45] nave reported that the
measured specific attenuation decreases with increasing path
length. The theory developed in this report predicts no such
behavior for the mean field of a radiowave propagating directly
through an unbounded forest. Such behavior might conceivably
arise, however, as a consequence of lateral-wave propagation modes
along the air-forest interface [refer to Section 5], non-homogen-
eous transmission paths through non-uniformly forested regions,
and/or random (non-coherent) scattered field behavior [refer to
Section 7].

-
-
.

XE P

IR TS

' 4.2.2.1 Specific Attenuation of Tree Trunks

~ The radiowave propagation model developed in this report
views the forest as a random ensemble of tree trunks, branches
and leaves having prescribed location and orientation statistics.
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Tree trunks are modelled as vertical lossy dielectric circular
cylinders of infinite length. The salient scattering properties
of individual cylirders can be characterized in terms of the dyadic
scattering amplitude £ which was determined earlier in Section 3.1.
The specific attenuation for the mean field propagating through an
unbounded forest of tree trunks can be found from the imaginary
part of Eqaaiion {4-2-30).
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The pro. _ c¢ion constants for the horizontally- and vertically-
. polarized components of the mean field propagating through an un-

3. bounded forest of parallel tree trunks can be obtained by substi- @
o tuting Equation (3-1-1) into Equation (4-2-30). Recognizing that
ﬂﬁ for a forward-scattered radiowave propagating parallei to the

j
4
!
;

forest floor,
o=1i ’ Gi = /2 R ¢i - ¢s = -7 (4-2-1-1)
then

(pp) _ ~(PP) 2=l
C, = ¢} (4-2-1=2)

and the equation for the propagation constants simplifies to

and all other parameters are defined in Section 3.1.

-

.o

R o

e - _ 2p (pp) (pp) - -

rP Kp k,[l jk:(, +2§cn )] (4-2-1-3)

;: where,

?'."; .
Tﬁ' - Mn/Pn ’ (p=h) (4-2-1-4) a
%!". CAPP) - .
Ff - Vn/Nn , (p=v) (4-2-1-5) }

;‘ The specific a‘tenuation attributable to tree trunks as ex- V]
pressed by the imaginary part of Equation (4-2-1-3) is exemplified
in rigure 4-6 for the case of a radiowave propagating parallel to
the forest floor (ei=-90°). These calculations are based uvon a ;
.Q tree trunk radius of 10 centimeters and a trunk number dengity of @ =
1 trunk per square meter. Three models are employed to describe
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the permittivity of the wood [refer to Appendix A], but only model
III can be considered realistic.

It is apparent from Figure 4-6 that, in agreement with exper-
. iment ([33, 36, 39, 40]), vertically polarized radiowaves are atten-
:ﬁ uated more severely than are horizontally polarized radiowaves.
. It is further apparent from Figure 4-6 that for horizontal polar-
ization the specific attenuation is relatively insensitive to the
particular choice of the wood permittivity model. This is also
true for vertical polarization above 70 Megahertz. This behavior,
as well as the oscillatory behavior evident at still higher fre-
quencies and shown in greater detail in Figure 4-7 for several
values of 6,, can be attributed to resonanrnce effects. It is also
apparent that above 200 Megahertz resonance plays a majnr role in
tree trunk scatter models and essentially precludes the utilization .
of simple dipole models at UHF for all but the smallest trees.
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In the VHF band, when the radius of the tree trunk is small
relative to the radio wavelangth within the trunk, Equation (4-2-
1-3) reduces to the dipole approximation

Kp = koll + pnazxz/(2+xz)] (4-2-1-6)

for horizontal polarization, and to

K, = koll + pﬂazxLIZJ (4-2-1-7)

for vertical polarization. These equations have been compared ;j
with those derived by Brown and Curry [25]. Unfortunately, a
direct comparison was not possible because Brown and Curry averaged
their results over a uniform distribution of tree-trunk inclination
angles and did not provide intermediate results. However, when
their technique was used to find the propagation constant appro-
priate to an array of parallel cylinders, the derived expressions
agreed exactly with Equations (4-2-1-6) and (4-2-1-7). This com-
parison provided an independent check of the CyberCom results.
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4.2.2.2 Specific Attenuation of Branches

LaASSONaNRE A AP

Branches are modelled as lossy dielectric circular cylinders
of finite length. The salient scattering properties of individual
cylinders can be characterized in terms of the dyadic scattering k
amplitude f which was determined earlier in Section 3.2. The spe-
cific attenuation of the mean field propagating through an unbounded

forest of branches can be found from the imaginary part of Equation
(4-2-25).

ywe e, i} LR
. PP

The propagation constants of the mean scattered field propa-
gating through an unbounded forest of branches can be obtained by
substituting Equations (4-1-2-7) and (4-1-2-8) into Equation (*-2-
25) and finding, for the horizontally-polarized component,

Y vEI—v’v.'

¥ v

X
Kh = k°{1+ (9/2) (ma l)Xz[ﬂm s1ln eb‘f:—:x—z]} (4~2-2 1)
and, for the vertically-polarized component,

X
= 2 2 2 2
Kv kogl + (p/2) (7a z)xl[foiizT (cos Bi gin eb

+ 28in26i coszeb) + Ié%;]} (4-2-2-=2)

The specific attenuation attributable to branches as ex-
pressed by the imaginary part of Equations (4-2-2-1) and (4-2-2-2)
is exemplified in Figure 4-8 for the case of a radiowave propaga-
ting parallel to the forest floor (ei-90°). These calculations "Li
are based upon a branch radius of 1 centimeter, a branch length )
of 1 meter, and a branch number density of 1 branch per cubic
meter. All branches are assumed to be inclined 45 degrees with
;. respect to the vertical, but uniformly distributed in azimuth.

" Three models are employed to describe the permittivity of wood ]
E. {refer to Appendix A), but only model III can be considered real- _%
;~ istic. Assumptions implicit in the development of the thin branch ]
E. scattering medel preclude the consideration of branches of signi- “‘Lﬁ

ficantly greater radius over the frequency band 200 - 2000 MHz.
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In the thin-branch frequency regime, the frequency behavior
° of the specific attenuation is determined by the frequency be-

Cpan s AR St

@
havior of the susceptibility of a single scatterer. For branches, -_ﬁ
: this is clearly evident from Equation (4-2-2-1) and (4-2-2-2),
where the only frequency-dependent parameter is the susceptibility Tj%
of the wood X,. Further, since all three models for wood permit- ;ﬁ
tivity satisfy the inequality [refer to Appendix A]. .Q
P << X} = 39 (4-2-2-3) s
it is apparent from Equationg (4-2-33), (4-2-2-1) and (4-2-2-2) ;%
that for radiowaves propagating parallel to the forest floor fﬁ
(8, = 90°) .;;f?fj
o = (8.686)k,(p/4)(nazz)x;_sinzeb (dB/m) (4-2-2-4) ’1
and
a, = (8.686)k, (p/4) (TaL)X;cos6, (dB/m) (4-2-2-5)

80 long as eb is not too near 90 degrees.

The empirically-derived behavior predicted by Saxton and Lane
[refer to Figure 1~1] is also shown in Figure 4-8. Although the
model predictions agree reasonably well with experiment so far as
order of magnitude is concerned, only computations based upon wood
permittivity model I reflect a similar frequency dependence. How-
ever, because wood permittivity model I does not properly account
for ohmic losses within the wood, it must be considered nonrealis-
tic and the near agreement between the branch model employing it
and experiment only coincidental. This is not to say, however,
that the thin-branch model is invalid. It must be recognized that
Y the empirically-derived behavior predicted by Saxton and Lane re-
fers to attenuation through a forest (tree trunks, branches and
leaves) and not solely to attenuation through branches. Thus, for
example, if tree trunks were the dominant scatterers, the sub-
resonant behavior contributed by the trunks [refer to Figure 4-6]
could easily mask the essentially frequency-independent behavior
predicted here for the branches using wood permittivity models II
and III. Further study is required.
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4.2.2.3 specific Attenuation of Leaves

Leaves are modelled as lossy-dielectric circular discs.
The salient scattering properties of individual discs can be char-
acterized in terms of the dyadic scattering amplitude £ which was
determined earlier in Section 3.3. The specific attenuation for
the mean field propagating through an unbounded forest of leaves
can be found from the imagirary part of Equation (4-2-25).

The propagation const{ .nts of the mean scattered field propa-
gating through an unbounded forest of electrically thin leaves can
be obtained by substituting Equations (4-1-3-9) and (4-1-3-10) into
Equation (4-2-25) and finding, for the horizontally-polarized com-
ponent

X
K, = ko{1l + (p/2) (nva?t)X [? - X I ]} (4-2-3-1)
h g L 211+x£$ 1

and, for the vertically-polarized component

X
- 2 - L 2 .2 oo ao
Kv k° l+ (0/2) (1Ta t)Xz[l m:i-;’— (IlCOS Oi+21251n 91)] (4 2-3 2)
where,
w ) m
Il = J d9p£(6)81n 0 : 12 = [ depz(e)cosze (4-2-3-3)
0 0

and pz(e) is the probability density function of the leaf inclina-
tion angle.

In the frequency band 200 - 2000 Megahertz, leaves may be con-

sidered, nearly always, to be electrically thin [refer to Section
4.1.3].

The specific attenuation attributable to leaves as expressed
by the imaginary part of Equations (4-2-3-1) and (4-2-3-2) is
exemplified in Figure 4-9 for the case of a radiowave propagating
parallel to the forest floor (ei-=90°). These calculations are
based upon a leaf radius of 5 centimeters, a leaf thickness of 1
millimeter, and a leaf number density of 200 leaves per cubic
meter. The random orientation of the leaves is described by a pro-
bability density function assumed to be uniform in azimuth, and
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uniform in elevation over the range of 0 - 30 degrees (the leaves
tend to be horizontal). Three models are employed to describe the
permittivity of the leaves (refer to Appendix A], but only model
IITI can be considered realistic.

®
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For electrically thin leaves, the frequency behavior of the
specific attenuation is determined solely by the frequency be-
havior of a single scatterer. This is clearly evident from Equa-
tions (4~2-3-1) and (4-2-3-2) where the only frequency dependent
parameter is the susceptibility of the leaf Xge Further, since all
three permittivity models satisfy the inequality ([refer to Appendix
A) !

Xy << X3 = 39 (4-2-3-4) :

1 g ORI N

é

it is apparent from Equations (4-2-33), (4-2-3-1) and (4-2-3-2)
that for leaves e y

oy = (8.686)k,(p/2)(ﬂazt)XE(l - kIl) (4-2-3-5)

a, = (8.686)k,(p/2)(ﬂazt)XE(l - I,) (4-2-3-6)

Especially noteworthy is the strong similarity between the fre-
quency behavior of the leaves [Figure 4-9] and that of the bran-
ches [Figure 4-10]). This similarity is a consequence of using
quasi-static boundary conditions for both the leaf and the branch or
in developing expressions for their dyadic scattering amplitudes :
[refer to Section 3].

The empirically-derived behavior predicted by Saxton and Lane “
[refer to Figure 1-1] is also shown in Figure 4-9. Although the s
model predictions agree reasonably well with experiment so far as e
order of magnitude is concerned, only computations based upon leaf ‘
permittivity model I reflect a similar frequency dependence. How-

>
=
L 8
e

ever, because leaf permittivity model I does not properly account k.i
for ohmic losses within the leaves, it must be considered nonreal- %
istic and the near agreement between the electrically thin leaf ﬁ
i. model employing it and experiment only coincidental. This is not ‘.;
= to say, however, that the chin leaf model is invalid. It must be TQ
recognize. that the empirically-derived behavior refers to atten- ﬂ
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uvation through a forest (tree trunks, branches and leaves) and not
solely to attenuation through leaves. Thus, for example, if tree
trunks were the dominant scatterers, the sub-resonant behavior “0

B
contributed by the trunks [refer to Figure 4-6) could easily mask :
the essentially frequency-independent behavior predicted here for E
the leaves by using leaf permittivity models II and III. A similar j
caveat was discussed in the case of branches. "@
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4.3 Salient Forest Descriptive Parameters

Experimental verification of the electromagnetic forest model
regquires the identification of measurable gquantitative parameters
to describe the forest. Some of these parameters are microscopic
(e.g., the size and relative permittivity of individual tree trunks,
branches and leaves); other parameters are macroscopic (e.g., the
number of trees per acre and the number of leaves per unit volume
of forest). Several of these parameters (microscopic and macro-
scopic) have been identified earlier in this report and are dis-
cussed below.

For tree trunks, the specific attenuation (a) experienced in
the low-frequency (Rayleigh) regime by a horizontally or verti-
cally polarized radiowave propagating through an unbounded forest
can be determined from Equations (4-2-1-4) and (4-2-1-5). Using
these equations, CyberCom has been able to derive the following N
explicit relations between the specific attenuation and select
salient parameters of the trunks

o, = (1.13)a%pfX%/|X, | (dB/m) (4-3-1)
a, = (0.286)a%pfX] (aB/m) (4-3-2) ;
where a is the trunk radius (meters), p is the trunk number den- "ﬁ

sity (trees per square meter), f is the frequency (Megahertz, and
Xz is the susceptibility of the wood. Note that the specific
attenuation is directly proportional to the area occupied by the
trunks and to the frequency. Analogous expressions for specific “'F
attenuation have not yet been determined (outside the Rayleigh
regime, at higher fregquencies).
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For branches, CyberCom has been able to derive from Equations
(4-2-2-4) and (4-2-2-5) the following explicit relations between
the specific attenuation due to electrically-thin branches and
select salient parameters:

o = (0.143)a’zpfx; sinzeb (dB/m) (4-3-3)

a, = (0.286)a’£pr£ coszeb (dB/m) (4-3-4)

where a is the branch radius (meters), 2 is the branch length
(meters), p is the branch number density (branches per cubic meter),
f is the frequency (Megahertz), Xz is the susceptibility of the
wood, and 6, is the angle that the branch makes with the vertical.
It is apparent from these equations that the specific attenuation
depends upon the square of the branch radius, but only linearly
upon branch length, number density, and XE-

For leaves, CyberCom has been able to derive from Equations
(4-2-3~5) and (4-2-3-6) the following explicit relations between
the specific attenuation due to electrically thin leaves and
select salient foliage parameters:

o = (o.zss)aztpfx;(l - %I,) (dB/m) (4-3-5)

a, = (0.286)a2tpfx;(1 - 1,) (dB/m) (4-2-6)

where a is the leaf radius (meters), t is the leaf thickness
(meters), p is the leaf number density (leaves per cubic meter),

f is the frequency (Megahertz), and Xy is the susceptibility of
the leaves. The parameters Il and I2 are related to the proba-
bility density function of the leaf inclination angles and are
defined in Equation (4-2-3-3). It is apparent from these equations
that the specific attenuation depends upon the square of the leaf

radius, but only linearly upon the leaf thickness, number density,
and XE.
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ﬁ: It may be noted that each of the above expressions is of :
p the form Py
i~. '
Sg a = kVpfG (4-3-7) i
S 3
- where %
5 o
- k = constant 2,
: V = volume of element :
y 1
" p = density (no./m?3) J

f = frequency in MHz

G

geometrical factor
Vp = fractional volume

As it is required in several developments in this report that
fractional volume be small, a preliminary evaluation of this quan-
tity has been made using Reference 15. This lists for forests in
many parts of the world the following:

A = basal area in m?/hectare (10'm?)

M, = dry mass of stem wood

Mb = dry mass of branches

Hf = dry mass of foliage

N
lu_
[
WL
P.'.‘
e
jaa’
[
ha
~
Y
.n_"
X

A cursory average of values for the United States gives the o

y following fractional volumes: N
o - .
R Trunks A x 107" = .0064 X
i g

4 "
N Branches .0064 x Mb/Mw = ,0013 R
N

= 3

Leaves .0064 x Mf/Mw .00016 3

N Y
-9 These values are clearly very small. -
E: ;i
2 2
= 5
e e
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5.0 Anisotropic Forest Slab Model

Results were obtained above for an unbounded continuous medium
equivalent toan infinitely high forest of model trunks, branches or
leaves. 1In this section the medium is bounded at a forest-air up-
per interface to provide a more realistic overall model. This
necessitates starting again from Maxwell's equations, inserting
the dyadic permittivities from Section 3. The resulting inhomo-
geneous wave equation for an anisotropic medium is converted to a
homogeneous equation for an isotropic medium by the substitution

z2' = /et7e 2 (5-0-1)

The vector poteritials are found by an asymptotic evaluation
using integrations in the complex plane. The reflected component
is found to include a lateral (tree-top) component. These, plus
the direct wave are the potentials used to find the corresponding
vertical components of the E field received by a vertical dipole.

5.1 Model Formulation

The basic slab model for the forest is shown in Figure 5-1.
The trees and vegetation are assumed to be distributed uniformly
between a smooth forest floor and the air interface at height h.
Earlier efforts [93, 104, 107]) have shown that the presence of the
ground complicates the model significantly. The complications can
be avoided, however, by allowing the ground plane to recede to
2z +-=» g0 that the model reduces to the half-space representation
shown in Figure 5-2. This simplification provides a very good
approximation to the basic slab model if neither the transmitting
or receiving antenna is located too close to the ground [107].

Consider a transmitting antenna which is representable as a
vertical electric (Hertzian) dipole having a time-harmonic current
moment Idl °* exp{jwt} and immersed a distance d below the inter-
face of two semi-infinite media [refer to Figure 5-2]. The iso-
tropic upper half-space (z > 0) represents the air and is charac-
terized by the permittivity €,, and permeability u, of free-
space. The electrically anisotropic lower half-space (z < 0)
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represents the forest and is characterized (at least so far as the
mean fields are concerned) by the effective dyadic permittivity

g€, and the free-space permeability u,. The relation between the
relative effective dyadic permittivity ¢ and the biophysical) para-
metere of the forest has been described in Section 4 of this report.

5.2 Mean Fields

In any charge-free medium where the electromagnetic fields

vary harmonically as exp{jwt}, Maxwell's equations may be written
in the form

VXE-= -juB V- D=0

(5-2-1)
VxH=ju+J V:B=0

If the mediunmn is electrically anisotropic and characterized by the
relative permittivity dyadic g, the constitutive relations

D=c¢cee *E B = poH (5-2-2)

may be introduced and Maxwell's equations re-written as

VX E-= ~juwuH Ve.eg-E=0

(5-2-3)
V x H= jwue,g*E+ V- -H=0
Because the forest may be considered uniaxially-anisotropic with
respect to the mean fields [refer to Section 4],

£ = ELX°X° 4 e, yY°® + £,2°2° (5-2-4)

b4

can be used to represent the effective relative complex permit-
tivity of the forest, and E, H the mean fields.

Because for any vector A,

Ve(vxa) =0 , (5-2-5)
the relation
V- -H=0 (5~2-6)
5=2
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suggests that there is a vector A satisfying the relation*

H = jueoe, (V xA) (5-2-7)

If this expression is introduced into Maxwell's equations, it
may be shown that A satisfies the equation

ViA+kig cA+e t(gme D) - VIV - A) = (jueeey) (5-2-8)

Je
and that the mean electric and magnetic fields may be derived from
A using the relations

E = kie, A + V(V - A) (5-2-9)

H= jwe,et(v xA) (5-2-10)

For an electrically isotropic medium where

€, = €E_ = ¢ (5-2-11)

Equation (5-2-8) reduces to the inhomogeneous vector wave
equation

VA + k2eA = (-jueqe) ‘A (5~2-12)

and A is known as the electric Hertz potential [111].

In Region I (above the forest) where there are no electro-
magnetic sources

I
gs = 0 (5-2-13)

the vector potential (é;) satisfies the homogeneous vector wave
equation

vaal + x2al = 0 (5-2-14)

In Region II (within the forest) where a vertical electric
(Hertzian) dipole of current momenﬁ’ Idl is immersed a distance
d below the top of the forest canopy, the vector potential (AII)
satisfies the inhomogeneous vector equation

* The scalar coefficient juwe,€y has been included for mathematical couvenience.

* The harmonic factor exp{jwt} has been assumed and suppressed.
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= (-jue,e,) " TA18 (x) 8 (y) 8 (2 +a) 23 (5-2-15)

Because the current moment Idl is directed along the z-axis,

a solution QII will be sought having only a z-directed component,
i.e.

a’l = (0,0,a7%) (5-2-16)

Equation (5-2-16) permits Equation (5-2-15) to be reduced to the
inhomogeneous scalar wave equation

2,1II 2,11 2. 11
9 Az 9 Az €, ] Az ) 11
+ + I + k°EZAz
ox? dy? t/ 3z?
= (~jueoe,)” 1818 (x) 8 (y) 6 (z+a) (5-2-17)
By introducing the anisotropy factor
a= (e /e )2 (5-2-18)
t’" "z
and the change of variable
z' = az (5-2-19)

Equation (5-2-17) can be re-written as

I1
Zz

vaAII

. * kil = (-jue.et)"xdl's(x)c(y)c(z--+d') (5-2-20)

where Vf represents the del operator transformed accordinc to
Equation (5-2-19). Note that as a consequence of the change of
variable, the inhomogeneous scalar wave equation for the aniso-
tropic medium [Equation (5-2-17)] has been transformed into the
homogeneous scalar wave equation for an equivalent isotrogié me-
dium [111]. The possibility of such a transformation for unbounded
anisotropic media apparently was first suggested by Clemmow [121].

The solution to Equation (5-2-20) consists of two parts: the
complementary solution (A:fc) to ¢ .& homogeneous scalar wave

~

dhnd ok o

St o A

_'J PR PV W A



o
equation, and the particular solution (A:Ip) to the inhomogeneous Zj;
’
scalar wave equation. The particular solution can be obtained by —
first introducing the three-dimensional Fourier transform pair !ﬁ
A (B) = Iaz(g)exp{jg- rlar (5-2-21) gq
A (r) = (2m) %A, (B)exp{~38 - r}as (5-2-22) »:
and subsequently using Jordan's Lemma to reduce the particular fﬁ
{
solution to the two-dimensional integral L
-,
_ exp{-3j(8,-B+1,|z+d])} L3
a7 (x) =All (p,z) = —324L J t : ag, (5-2-23) o
P 'P 81 weee T o
z 2 a0

where :

1, = alkie, ~ Bé)” =13 - jlty| (5-2-24)

The condition that 19 <0 is necessary to ensure the convergence
of the integral as |z+d| +=.

f Recognizing that the particular solution [Equation {5-2-23)])

{ is a two-dimensional integral, complementary solutions to Fquations
4 (5-2-14) and (5-2-20) will be sought utilizing the two-dimensional
'. Fourier transform pair

h

g A,(B,,2) = JAz(g,z)exp{jgt- pldp (5-2-25)
b - ~

i., Az(glz) = (2“) 2IA2(Et"::exP{-jﬁt.g}d§'t (5‘2"26)
:

E with appropriate consideration given to “he transformation of

: Equation (5-2-19). Substitution of Equation (5-2-26) into Equations
i" (5-2-14) and (5-2-20) yields the complementary solutions

' ~I,1 I,II b | .

: Ai:cl(ﬁt'z)'=c+' (ﬁt)expfjrlizz}-+C_'II(§t)exp{-JTl'2z} (5-2-27)
E where,

e 2 2,k Slewt

g = (ko = Bg)® =1, - j|ty| (5-2-28)
i. 5-7
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T, = alkZe, - B2)% = 1, - 3|17] (5-2-29)

2 2

To ensure that the electromagnetic fields remain finite as |z| + =,
it is necessary that

I -
Co(By) =0 (5-2-30)

cll,) =0 (5-2-31)

Following a normalization of the coefficients C (8 ) and
C (8, ) and the addition of the complementary and particular so-
lutions associated with the wave equation for Region II, the po-
tential functions for Region I and II may be written, respectively,
in the following forms:

A:(g,z) = ——;lgl—- Jn(gt)exp{-jrlz}exp{-jgt-'g}dgt (5-2-32)
8w WEGE,

2

A:I(B,z) = 141 I[(l/Tz)exp{-jrz|z+dl}-ru(gt)exp{jrzz}l
8n WEoE,

- exp{-jg, - pldg, (5-2-33)

Because the tangential components of the electromagnetic
fields must be contiauous across the air-foregt interface,
Equations (5-2-9), (5-2-10) and (5-2-16) require

I I1
Ay (p,0) = €A " (p,0) (5-2-34)

1 I
3la,(p,0)1/3z = 3[a; (p,0)1/32 (5-2-35)

Substitution of Equations (5-2-32) and (5~2-33) into Equations
(5-2-34) and (5-2-35) reveals that
M(B,) = [2e,/(1, +e,1,)]exp{-]jt,d} (5-2-36)

N(8) = [(rz'-etrl)/(tz-+et1l)tz]exp{-jrzd} (5-2-37)

5-8
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so that the potential functions for Region I and Region II are,
respectively,

..

2¢ NN

A:(Q_,z) 2z :Idl t exp{-jrzd}exp{-jtlz} ’-};}
81 weoe, (T, +€,T,) BN

- exp{-38, * p}dB, (5-2-38) »,

’ Lt rer
l. P R

4 NP SRR

. [ WY LR\ Ny

-jt,|z+d| T, —e.1 jt, (z=d)
I1I -Idl e 2 t

81 weee, T, Ty tE,T, T,

S A
. |
L -

- exp{-jB, - pldB, (5-2-39)

Equations (5-2--38) and (5-2-39), in conjunction with Equations
(5-2-9) and (5-2-10), constitute the formal solution for the

mean electromagnetic fields of a vertical electric (Hertzian)

dirole immersed in an anisotropic forest half-space.

Uatasatit e VT
-t B

5.3 Asymptotic Evaluation

S

The integral representations for the potential functions

® afforded by Equations (5-2-38) and (5-2-39) are not amenable to
exact analytic evaluation. Fortunately, analytic asymptotic

E approximations can be derived which will prove adequate for most

I engineering applications. However, before proceeding with the

Rt development of these asymptotic approximations, it will prove

expedient to introduce the transformations

Bx=Acosw px-pcos¢

g (5-3-1)

;" By=Asinw py-psinO

‘ so that with the help of the identity

;‘ 1 (" .

! Jo(Ap) = VT I exp{=-jip cos (¢ - ¢) } Ay (5-3-2)

. -

‘.
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the potential function within the forest can be written as

-1d1 “[e-jlet-dl jr,(z-dj (’é

II
A (p2) = +T(t,,1,)e

n
4 WEaE, 7y

3, (A0)
c 2 aax (5-3-3)
T, 9

where

T, = €,7T
T) = 2t (5-3-4)

1e¢ "2
‘l‘2 + Et‘l‘l

I'(t

may be recognized as the Fresnel reflection coefficient associated
with the air-forest interface and, as before,

T, =1l - 3t = (k2 - AN (5-3-5)

1, = 1) - 3ltyl = atkle, - A7 (5-3-6)

Tf the identity [111, Equation /{5.35a))

exp{-jk_vER} Ine—jx|z+d|

J, (Ap) AdA (5-3-7)
R 0 K
where
cw (ke - A2)% (5-3-8)
R= [p? + (2z-4)2)" (5-3-9)

is analytically continued into the complex z-plane using the
transformation of Equation (5-2-19), the potential function in
the forest can be more conveniently written in the form

IT _ ,(d) , ,(x) -3-
Az Az + Az (5-3-10)

where

......
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PN
oy

Al =jrar | oxPi-3k./E.Ry)

N (5-3-11) S

lwwc.e: and ;:

Ry = [p? + a?(z+q)?)¥ (5-3-12) .f@

is the component of the potential function associated with the ;—4
direct wave, and 1
A

@ sz (z-d) “j

AlY) @ A fpp o) & g (Ap)Adh (5-3-13) o3
4nweoe.z 0 T, id‘.

is the component of the potential function associated with the
rveflected wave.

< The asymptotic evaluation of Az(r) is most readily achieved by
first analytically continuing the real integration variable ) into
the complex plane. Unfortunately, the integral presented by Equa-
tion (5-3-13) presents a mathematical problem: the path of inte-~

® gration begins at the origin. This can be eliminated by expressing
the Bessel function J,(Ap) in terms of the Hankel functions of the
first and second kinds [H!‘) (Ap) anad H?) (Ap)], and then using

. analytic continuvation to express the Hankel function of the first

® kind in terms of one of the second kind [111]) so that the electro-
magnetic waves exhibit the proper asymptotic behavior at infinity

i as might be expected with the harmonic time dependence exp{juwt}.

‘ As a consequence of these mathematical manipulations, the poten-

|

» tial associated with the reflected wave can be recast into the
form
(x) _ _-1a1 (" 31, (2 1.2 O)
Az = Tl,m-é—oe—z [ I'(‘tl,‘tz)e _2"_[:— Kdl (5‘3"14)
| 4 -00

It is especially important to note that without the con-
straints imposed by Equations (5-3-5) and (5-3-6) on the imaginary
- parts of T, and T,.» the integrand of Equation (5-3-14) would not
be uniquely determined. Generally speaking, the integrand is four-
valued (corresponding to the four possible combinations of signs

A 5-11
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in the square roots defining 7, and 71,), and its Riemann surface
consists of four sheets. To insure the convergence of the integral
at infinity and the unigqueness of the integral everywhe.e, the in-
tegration path in the complex A-plane must be constrained tc the
permissible (upper) sheet defined by Equations (5-3-5) and (5-3-6).
This can be achieved by joining the branch points (i.e., those
points where t, and 1, are zero) by two (essentially arbitrary)
branch cuts and insuring that the branch cuts are not intersected
by the path of integration.

An asymptotic approximation for the potential function in the
forest suitable at relatively large distances from the transmitter
(kop >>1) can be obtained by evaluating Equation (5-3-14) using the
method of steepest descent [lll]. This approach involves the con-
formal re-mapping of the integrand from the A-plane to the w-plane
using the tranasformation

A= k,/E_ sinw (5-3-15)

to eliminate the brinch cut associated with T,? the subsequent
deformation of the .ntegration contour to coincide with the path
of steepest descent passing through the saddle point associated
with the exponentiazl factor; and, finally, the approximate evalua-
tion of the integri:l defining Aér).

The complex v-plane associated with the transformation of
Equation (5-3-15) is shown in Figqure 5-3. Under this transfor-
mation, the coordinate axes of the A-plane are mapped into lines
in the A-plane Jdefined by*

tanh w" =« (X;/Z)tan w' , (A'~-axis) (5-3-16) ]

i

. and Q
e - 4
3 tanh w" = -(2/X3)tan W' , (A"-axis) (5-3-17) ;
" 3
F; The branch points associated with T, are located at y
- 1
'@ wg = (2n+1)n/2 & VX, ,  (n=1,2,...) (5-3-18)  @g

* Predicated upon the condition that |X | =[x} - 3x3| <<1.

L 5-12 i

.........




B

B R AL I R I 2 T Bte B I IRad Ise i ik 10 A oA {0l
IS -t CeTo Tt et Yt

Y

LRy LIy B )

N J-JcJ
A .,.1. o
. * ‘

A

DI R SR R VLR PR WS W )

1

% -41-—.1.4 !-;!-s

L n~ (P
K P Pal
PR YA

auetd-a xa7dwod

- - <

z/u

daas

¥ ®

AN i L A A Ml

B Ml M W i e A 4 "

o - n-.-'-\*
‘..v......\ ....
e PR S TS S A

tg-g 2InbTJ

II

z/5x

® ’ o

PR PR TT SUN U U U iy WU T NN WO WAL BN

5-13




2

v - o
B

o
If the associated branch cuts are defined so that “
In{t,} = Im{ko(l - € sin?w)¥} = 0 (5-3-19) 5

then from the branch point o the origin, the branch cut is

defined by*

tanh w" = (XZ/2)tan w' , (w'w" > 0) (5-3-20) GF
and from the origin to infinity by*
tanh w" » -(2/X2)tan w' ,  (w'w" <0) (5-3-21)
o
Note that the branch cut proceeds from the branch point along the 1
A'-axis to the origin, experiences a clockwise angular rotation of :
n/2 radians, and then proceeds from the origin along the A-axis to :
infinity. 2]

¢

Poles, associated with the denominator of the reflection
coefficient P(Tl,Tz) , occur wherever

cosw + \/q a(l -ezsinzw)l’ =0 (5-3-22) '
These poles can be found on the top sheet where* %
W, = t(n/4 + jXL/4) (5-3-23) ;j
and on the bottom sheet where* vi
Wy, = +(31/4 + 3XP/4) (5-3-24)

Anticipating an asymptotic evaluation, the Hankel function
in Equation (5-3-14) can be replaced by its approximation for
large arguments

CISNTPAR ‘/Fzﬁ exp{-3 (Ap = 1/4) } (5-3-25) o

Introducing the transformation defined by the mapping of
Equation (5-3-15) and the geometric transformation suggested by

* pPredicated upon the condition that IX,I = |X; - jx;I << 1.
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Equation (5-2-19), viz.

p = Rr sin er aa
(5-3-26) .
-a(z-d) = Rr cos er =

recasts the potential function into the form

(k /"

A(r) . (- . ej /4 Il‘(w) /sinw
z 4 i
TWELE, a(21rRr sin er)
. exp{-jk,v’g R, cos(w-6,) }aw (5-3-27)
wWhen
ko|VE R | >>1 (5-3-28)

Equation (5-3-27) can be evaluated asymptotically by defining the
integraticn path P (which, in the A-plane, coincides with the
A'-axis) into the steepest-descent path SDP (which, in the w-plane,
passes through the saddle point w= er) defined by

R,{Ve, R cos (w-0,)} = R {Ve, R} (5-3-29)
Integration of Aér) along the steepest-descent path yields
exp{-jk ve_, R_}
: al™) o 181 re ) c 2z X (5-3-30)
X drweqe, aR.
!v
y where
. cos® . - @(1 - ezsinzer);’
: r(ar) = (5-3~31)
Es} cos8_ + Ve (1 - ezsin’er)"
is the Fresnel reflection coefficient associated with the wave
specularly reflected from the air-forest interface.
) The validity of Equation (5-3-30) is predicated not only

e

upon the condition that
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k,l/E; R.| > 1, (5-3-32) .
but also upon the condition that the value of the reflection coef- EE
ficient T'(w) appearing in Equation (5-3-27) does not vary appre- ij
ciably along the steepest descent path in the vicinity of the sad- ‘)iﬁ
dle point, i.e. =

T'(wy) = 0 (5-3-33)
3
This assumption will prove justified if [87]) (,EJ

koer(Gr‘Bc)’l >»> 1 (5~3-34)

where

g
n

Gc = Arc 8in (1/@) (5-3-35)

= RS
2

For the forest, the effective permittivity € is close tc unity.
Further, because the distance p between the transmitter and re-
ceiver will, nearly always, be much greater than their height
differential |z-d|, the angle

(s
D e

g
.

b, = Arc tan [p/a|z-d|] (5-3-36)

will, nearly always, be close to m/2. As a consequence, the re-
qguirement expressed by Inequality (5-3-34) is usually much more
stringent than that expressed by Inequality (5-3-32).

P LT e - o g
AR A A Sl i)

Because er will, nearly always, be close to 7n/2, the defor-

M mation of the contour P into the steepest-descent path SDP nearly
i always results in the capture of the branch point wg. In order
to avoid crossing the branch cut when the branch point is cap-
tured, an additional line integral about the branch cut must be

M introduced [refer to Figure 5-3]. Integration about the branch
cut yields the asymptotic result that [87]

,__
Pl

cpemryricw
TLETIELIL

A(D) . Tal . 1 _expl-3k [p+ale,=1) *|z-d|1)
z 2TWE, k.(ez-l)kla [(Ez—l)kp-alz-dll'ﬂ

T v e, a e e

(5-3-37)
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subject to the constraint that

k [leg=1)%p - a|z-d|] (e,-1)¥

1
0% ] ORI
MY XN IR YRR ) o atd

5 > 1 (5-3-38) _
(koe,a |z--d|] RS
,'.'.-ﬁ
b
p >> |a |=°~‘l!/(e,-1)" (5-3-39) o
then
i
exp{-3k [p +a(e_~-1)%|z-a]]}
Aél) LY Idl . 1 o [ } 4 (5_3-40)
2nue, ko€, ~1) p2

W, ST

Actually, the validity of Equation (5-3-37) is predicated, not

,‘ only upon Inequality (5-3-38), but also upon the condition that
3 the reflection coefficient I'(w) appearing in Equation (5-3-27)
E does not vary appreciably along the steepest-descent path in the
'. vicinity of the branch point, i.e.
I"(wB) = 0 (5-3-41)
P
E This assumption is justified if
® (ko IR | le,=1)"% 5> 1 (5-3-42)

Observing that when a=1, the phase factor appearing in the
exponents of Equations (5-3-37) and (5-3-40) can be written in
> the form

R WW S

kolp + (e,=1)%|2-a|] = k. /& (d/cos6_)

+ ko lp - d(8in6 /cos6 ) - |z| (sind /cosd )]

- S v Y ¥ wR BT

L 3
+ k,ﬁ::(lzl/cosec) (5-3-43)

where
i.
{ ., = Arc sin (1//'5:) (5-3-44)
i
]
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The three terms of Eguation (5-3-43) suggest that the vector po- f
tential A:z) can be associated with a so-called "lateral™ wave i
which propagates from the transmitter up through the forest at the r'g
critical angle 6, to the air-forest interface, through the air j
along the air-forest interface, and down through the forest at the g
critical angle from the air-forest interface to the receiver. E
-5

As a consequence of this aaymptotic evaluation, a radiowave
propagating within the forest may be considered to consist of
three components - the direct -jave, the reflected wave, and the

lateral wave - and the vector potential within the forest can be
written in the form

U

2
5

II _ ,(d) , a(x) . o (2) -3-
Az A: + Az + A: (5-3-45)

where A(d) is the vector potential associated with the direct
wave [Equation (5-3-11)], A (r) is the vector potential associated
with the reflected wave [Equation (5-3-30)}, anad A(z) is the

vector potential associated with the lateral wave [Equation (5-3~
nl.

5.4 Electromagnetic Fields

The electromagnetic fields (E and H) within the forest can
be derived from the vector potential AII [Equation (5-3-45)) by
uaing Equations {5~2-9) and (5-2-10). Because the electromagne-

ES tic fielde &re related linearly to the vector potential, just as
%: the vector potential exhibits three asymptotic components (the

E direct, reflected, and lateral waves), so too will the electro-

E; magnetic fields. For example, the vertically-polarized ccmponents
. of the electric field vector E, derived under the asymptotic

E approximation from Equation (5-2-9) upon substitution of Equations
u (5-3-11), (5-3-30) and (5-3-37), are

‘-

: glda /E‘(ﬁ: ) 11 sin?6, expl-3k, 7%, Ra) (5-4-1)
i Ll Rd
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wy exp{-jk ve_ R } o
° el - va -—') 141 sin%0 T (6 ) e 2z X (5-4-2) —
4n R, '@,
(%) a exp{-jk.[p+ a(e:-l)"lz-dll
Y E,”" =60 Idl (5-4-3)
P | p?
z
where,
° Ry = [p? + a?(z+a) )" (5-4-4)
R, = [p? + a?(z-a)?]¥ (5-4-5)
e 04 = Arc tan| —Ff (5-4=5)
a (z+4d)
- 9
6, = Arc tan —e (5-4-7)
‘ L a Iz-dld
cos®,. - @(l-cgsin’ar)k
I‘(Or) = (5-4-8
o cos® _ + /Q(l-cznin’er)"
! a = 'Ietkz (5-4-9)
|
i, Note that in the limiting case of an isotropic forest, the aniso-
‘ tropy factor a-+1l, and the above results reduce to those obtained
by Staiman and Tamir [114, Equation (28) with a=-n/2). 1In this
limiting isotropic case, the parameters Rys R, ed and er acquire
@ the geometric interpretation shown in Figure 5-2.
The remaining component of the electromagnetic field, the
magnetic field intensity, can be obtained similarly. 1In this re-
port, however, attention will be focused upon the vertical electric
! 4 field Ege the only component received by a vertical whip antenna.
A 4
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6.0 Forest Pulse Response

The anisotropic half-space model of the forest developed in
Section 5 of this report is a time-harmonic model. The trans-
mitting antenna was assumed to be a vertical electric (Hertzian)
dipole having a time-harmonic current moment Idf-exp{jwt}. How-
ever, because the effective dyadic permittivity characterizing the
equivalent continuous medium of the mean wave is linear, the model
can be extended using linear system theory to accommodate the
transmission of arbitrarily-modulated waveforms. This extension
is especially importart if the model is to be employed in analysis
and evaluation of wideband spread-spectrum radio communication
systems.

Following a brief review of linear system theory in Section
6.1, the forest transfer function F(f,t) is identified in Section
6.2 and employed in Section 6.3 to define the forest pulse re-
sponse. In Section 6.4, the forest pulse response is evaluated
for the important practical case of a broadband, rectangular,
r-f pulse.

6.1 Linear System Theory

A system is a collection of interielated components or objects
for which there is specified a set of dynamic variables calied
excitations, or inputs, and another set called responses, or out-
puts [145]). The radio transmission channel through the forest
represents such a system. The tree leaves, branches, and trunks
constitute tl.e collection of components or objects which are inter-
related by mutually-induced currents excited within them by electro-
magnetic fields. The dynamic variable representing the input of
this system can be the time-harmonic electric current momemt Id4%
of an electrically small (Hertzian) dipole transmitting antenna.
The dynamic variable representing the output cf this system can
be the electric field E at the location of the receiving antenna.

The objective of systems analysis is to determine how such a
collection of components of objects behaves when subjected to an
arbitrary, but specified, excitation. For the analysis of linear

6-1
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systems (such as the forest transmission channel), which (by de-
finition) satisfy the principle of superposition so that

where F[x] represents the output response of the system to the
input excitation x, there are two basic approaches. The first
of these, which might be termed the "direct" approach, consists
in directly solving the input-output relation

y = F[x] (6-1-2)

subject to a known set of initial conditions or boundary condi-
tions. In the "indirect" approach, the input x is first resolved
into a set of elementary functions all of which are similar in
form. The response of the system to each elementary component
(presumably determined more easily than the response of the system
to an arbitrary input) is then obtained and the responses to all
the elementary components of the input added to obtain (by virtue
of system additivity) the cutput corresponding to the input.

Any one of a number of elementary components may be used for
the decomposition of the input. Two often-employed choices for
the elementary components are the Dirac de::a function and the
complex exponential. Resolution of the input x into a continuum
of Dirac delta functions may be achieved with the help of the
sifting integral

o0
x{t) = j x(t)dé(t-1)dr (6-1-3)
- 8D
If the response to the linear system at time t to a Dirac 6-
function applied at time t[6(t-1)] is £(t,T), the superposition
principle [Equation (6-1-1)] and the sifting integral [Equation

(6-1-3)] dictate that the response of the linear system to the
arbitrary input x(t) is

y(t) = I x(t)f(t,r)drt (6-1-4)

The function f(t,T) is termed the time-variant impulse response.
6-2
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Alternatively, the input x may be resolved into a continuum of
complex exponentials using the Fourier transform pair

x(t) = I X(f)exp{j2aft)af (6=1=5)

X(f) = I x(t)exp{-j2nftlat (6-1-6)

The function X(f) is called the amplitude :'pectrum of the input
x(t). If the response of the linear system at time t to the com-
plex exponential of unit amplitude axp{j2nft} is F(£f,t), the supe. -

® position principle [Equation (6-1-1)) and the inverse Fourier traas-
form [Equation (6-1-5)) dictate that the response of the linear
system to the arbitrrary input x(t) is

yi(t) = I X(f)F(f,t)exp{j2nft}dat (6=-1-7)

The function F(f,t) is termed the time-variant transfer function.

G

6.2 Forest Transfer Function

The time-variang transfer function of a linear system repre-
sents the response of that linear system at time t to the complex
exponential of unit amplitude exp{j2nft}. Inasmuch as the trans-
mitting antenna of the anisotropic half-space model of the forest
is taken to be a vertical electric (Hertz.an) dipole having a time-
harmonic current moment Idl-exp{jwt} [refer to Section 5.1], the
mean component of the vertically-polarized electric field found in
response to that current-moment [refer to Section 5.4], may be con-
sidered to be the forest transfer function F(f,t) after normalizing
the expressions for the mean field by Idl. Further, as a consequence
of thz relationship between the expressions for the mean field and
the forest transfer function, the forest transfer function F(f,t)
may be considered to consist of three components corresponding to
the direct wave [Fd(f,t)], the reflected wave [Pr(f,t)], and the
lateral wave [F,(f,t)].

hd Inasmuch as a real input (excitation) to any linear system
is always observed to produce a real output (response), it may
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be shown as a consequence of Equations (6-1-6) and (6-1-7) that ;
the real part of F(f,t) must be an even function of frequency, .-
¥

1)
i.e. 5
F'(£,8) = F'(-£,t) (6-2-1) :
and the imaginary part of F(f,t) must be an odd function of fre- 3
quency, i.e. c’i
F"(£,t) = -F"(-£,t) (6-2-2)
Further, inasmuch as d-c transmission through the forest is not 1
possible, Co;

F(0,t) =0 (6-2-3)

These relations have proved helpful in evaluating the field ex-
pressions of Section 5.4 at negative frequencies as required by
Equation (6-1-7).

It is apparent from Equation (6-1-7) that the forest transfer
function F(f,.t) should be defined over the entire frequency range
from minus infinity to plus infinity. In practice, however, the
forest .ransfer function need only be defined over the spectral
range occupied by the input signal X(f). This is fortunate be-
cause the forest transfesr fun~tion (the normalized vertically-
polarized electric field) is expressed o: the basis of a high-
frequency asymptotic evaluation [refer to Section 5 3] which may
give incorrect r:sults below one Megahertz.

Because each of the three forvest ‘ransfer-function components
may be considered to be a comgolex phasor, the received signal will
be either enhanced or degraded depending upor their relative strength
; and phase. Their relative strengths and phases are clearly fre-

s quency-dependent [refer to Section 5.4) and, therefore, the forest
_l’. transfer function is frequency-selective.

As a consequence of the frequency-dependent factor (wu./4m)
appearing in Equations (5-4-1) and (5-4-2), the effect of the
- direct- and reflected-wave components of the forest transfer func-
. tion on the transmitted signal will be primarily one of differen-
tiation. This is also true in free-space transmission as can be

- 6-4
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clearly seen by setting €y = eztl in Equation (5-4-1). Except for

its exponential factor (which is primarily one of phase delay),

the lateral-wave component of the forest transfer function is '
nearly frequency independent. This means that if an equalizer
having a response inversely proportional to frequency (f") is ".;_'j
employed at the receiver to ensure distortionless free-space trans- ,,;.

mission, direct- and retlected-wave pulses are received nearly
distortion free, whereas wide-band (40C Miz) lateral-wave pulses
could be severely distorted.

D,
\AV‘
\
.
.

6.3 Forest Pulse Response

Consider the current moment of the electrically small (Hertz-
ian) dipole transmitting antenna to be the rectangular r-f pulse

x(t) = p(t) - sin(2nf.t) (6-3-1)

where f, is the r-f carrier frequency, and p(t) is the pulse
envelope defined here to be

..(:

carrier frequency £, is 2/L.

The forest pulse response, if defined to be the vertically-
polarized component of the mean electric field arising in response
. to a rectangular r-f input pulse of current moment, can be obtain-
ed from Equation (6-1-7) upon the substitution of Equation (6-3-4)
for the amplitude spectrum of the input X(f) and the use of

1, lt| < L/2

. p(t) = (6-3-2)

o, lt] > L/2

t where L is the pulse length (duration).

®

h The amplitude spectrum of the pulse envelope and of the rec- oA

_t: tangular r-f puise can be determined from Equation (6-1-6) to be, _"-"_Z

}'-j respectively, o

L A

- P(f) = L sinc{nLf 6-3-3 o

i~ (£) {nLEf} ( ) .q

: and w

: X(£) = y3yfsinc{rL(£+£,)} - sinc{rL(f - £,)}] (6-3-4) i

N 4

2 The spectral bandwidth occupied by the central lobe about the ._1
i
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isf Equations {5-4-1), (5-4-2) and (5-4-3) for the forest channel E
o transfer tunctions. :
;; 6.4 Numerical Evaluation §
3; The evaluation of Equation (6-1-7) is not easily effected g

analytically due to the complex frequency dependence exhibited Qg

by the effective dyadic permittivity of the forest g. As a con-
sequence, numerical technigues based upon the fast Fourier trans-
form (FFT) have been employed to expedite its evaluation. A re-
view of the impor:ant properties of the FFT and special consider-
ations bhsaring upon its application to the numerical evaluation of
Equation (6-1-7) is presented in Appendix E.

©
Rebamn o BRI L 7L

To exemplify the numerical evaluation of the forest pulse
response, CyberCom has elected to consider (1) a transmitting-
antenna current mcment representable by a rectangular r-f pulse;
(2) a forest transfer function developed asymptotically on the
basis of an anisotropic half-gpace consisting entirely of elec- A
trically-thin leaves; and a receiver with or without equaliza- 1)
tion for distortionless pulse transmission in free space. The
channel model is illustrated in Figure 6-1.

€

The density of the leaves representing the forest has been »
taken as 200 leaves per cubic meter with each leaf represented ©
as a dielectric disc 5 centimeters in radius and 1 millimeter
in thickness; the leaves have been assumed to be randomly posi-
tioned in azimuth and location, and inclined from the horizontal

-~
P. -
)
[N
LI
0
-
e
~ .
I.-
L
o
.
gy

y'_-—v'r_,:';r‘.rv
[l «-

] with a probability density function uniform over the range 0 to -

Eg 30 degrees. The transmitter has been positioned 4 meters (h,)

e and the receiver 6 meters (h,) below the air-forest interface;

Fi they have been separated by 1 kilometer (p) [refer to Figure 5-2). :
?! The forest transfer functions corresponding to the direct- ~.@
&3 wave and lateral-wave components have been determined for the ‘
i} postulated forest parameters from Equations (5-4-1) and (5-4-3),

o respectively, and are shown (magnitudes only) in Figure 6-2 for -

g! both unequalized and free-space equalized receivers. The nearly

&; linear frequency response of the unequalized direct-wave component

%i 6-6 ‘o'
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apparent below 600 Megahertz will, as noted previously, lead to
differentiation and distortion of a pulses propagated through the
forest. The transfer function of the direct-wave component
equalized for distortionless free-space transmission is nearly
independent of frequency below 600 Megahertz. However, the
transfer function of the equalized lateral-wave component
appears now to behave as a low-pass filter. A comparison of

the unequalized and equalized forest transfer functions suggests
that, for distortionless transmission through arbitrary forests,
adaptive egualization parametric upon path length, antenna heights,
frequency, and forest susceptibility may be required.

The rectangular r-f input pulse of current moment x(t) is
shown in Figure 6-3(a). This short pulse, only 5 nanoseconds
long, consists of 3-cycles of a 600-Megahertz r-f carrie. and
occupies a spectral bandwidth (central lcbe) of 400 Megahertz.

The unequalized r-f output pulse responses y(t) corresponding
to the principal components of the forest transfer function are
shown in Figure 6-3(b) to (e). These responses have been cHm-
puted for the forest channel model of Figure 6-1 using a 256-
point (2%-point) FFT having a time resolution of 0.20833...
nanoseconds and a frequency resolution of 53.33... Kilohertz.
The direct- and reflected- wave pulses are distorted more than
the lateral-wave pulse for reasons previously noted. For the
equalized case shown in Figure 6-4, the direct- and reflected-
wave pulses are distorted less than the lateral-wave pulse.
Distortion of the-lateral-wave pulse is primarily attributable
to the poor low-frequency response of the asymptotic model,
although some distortion is also attributable to the equalizer.
Although the pulse distortion introduced by the forest appears
to be relatively small (at least for the forest parameters
employed here), multipath and intersymbol interference (ISI)
could be substantial for multipath transmissions.

At the r-f carrier frequency of 600 Megahertz, the am-
plitude of the reflected-wave relative to that of the direct-~
wave is 0.986 (0.12dB down) and its phase almost directly
opposite. Although the differential phase shift between
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direct- and reflected -waves attributable to path geometry

Ap = zggxﬁihﬁ (degrees) (6-4-1)

is only about 35 degrees, the phase shift imparted upon raflection
from the air-forest interface is about 172 degyrees, Thus, the rel-
ative amplitude of the direct-~plus~-reflected wave is only 0.107 or
about 19 dB below the direct. 1In the configuration considered,
which may not be realistic because the effects of tree trunks and
branches are not yet included, although the amplitude of the lateral-
wave relative to that of the direct-wave is only 0.22 (13 4B down),
it is approximately 6 dB above the direct-plus-reflected component
propagating within the forest. The differential time of arrival
(DTOR) between pulses arriving via the direct and lateral waves

is approximately

(pxz/2 = (hy+h.) %31300 = 5.9 nanoseconds (6-4-2)

6-12
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7.0 Non-Coherent Forest Scattering

In the preceding three sections propagation through the for-
est has been described neglecting fluctuations about the mean field.
This section will show that these become important as the frequency
and propagation distance increase. In this section, the effect of
the fluctuations will be taken into account for one specialized

el
- RN

e
P .
ST .

o propagation through an infinite medium of vertical trunks will be
considered. The trunks will be assumed to be identical vertical
circular cylinders of radius a and relative dielectric constant
€p In addition, their diameter will be chosen small enough so

I

forest configuration. The results will give an indication of the . {

x‘ importance of the fluctuating field in the forest environment. .y
t In order to keep the analysis tractable, the scalar case of I ,‘
—"&2

- ..’A‘
ROR TS

St s’
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. that the Rayleigh criterion is satisfied. Although the Rayleigh 2%
assumption is somewhat restrictive, physically meaningful results :jlg;;;
can still be attained over a portion if the frequency range of C
interest. The field is excited by an electric line source of unit SAN
® magnitude which is parallel to the trunks. As has been pointed Q;;

out in Section 2.2.1, the assumed source and scatterers give rise
to an electric field vector wholly in the z direction. The pro-
blem can be exactly scalarized in terms of this component.

The strength of the random component will be examined by
determining the intensity of the field

P ne ma e . .
vt $he e
fe e ] oty ‘o
A . ) Lot .
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I(x,) = <¥(x,)¥*(x,)> (7-1)
* and relating it to” the intensity of the mean component
Io(x,) = <¥(x,)><¥*(x,)> (7-2)
': For two-dimensional Rayleigh scatterers, the intensity satisfies
* Equation (2-2-50) with 5t=gt. The equation is
: I(x,) = ic(gt)I’-ejdgtlc(gt-gt)lzx(gt) (7-3)
- where B8=k%|a|2?p with a being the polarizability constant appearing

in Equation (2-2-21). For a circular cylinder, the polarizability
is a=-X£1raz with X, =e;, -1. In obtaining Equation (7-3) from
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Equation (2-2-50) it has been assumed that the trunk medium is
unbounded (s =«) and the density p is constant. These homogeneity
assumptions lead to a translationally invariant Green's function: "'Q

Glxy,x!) = G(x, -x) (7-4) :

The mean Green's function satisfies Equation (2-2-47). 1In
the Rayleigh regime this equation reduces to

4

o TR T Tl Ty e ‘.”."rr'r‘v‘,v".r‘*vr."ﬁ"
PR RS RN -~ 720l
A

[V +k3(1+pa))G(x,) = &(x,) (7-5)

The solution is given in terms of the zeroth order Hankel function
of second kind. It is

(»

|
-
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¥
d

TV I R
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- Gix,) = 1 8iMw (7-6)

iﬁ and

N L
., K = koVI +poa (7-7)

N Before proceeding it should be pointed out that the intensity

i- Equation (7-3) was derived under the assumption of small fractional
' area (two-dimensional analog of small fractional volume used for

. three-dimensional problems). Analytically, this condition states

§ that ma2p<<l. For a forest having a = 10cm and p = .1/m, the con-

. dition is met, since ma®p = 0.003 << 1. Since pa = Xz(nazp) and

‘ |X£|=40, one can also conclude pa<<l.

&f The exact solution to Equation (7-3) can be obtained by con-
;~ volution technigques; however, the inverse transform involves a
9 double integral. 4o simplify the form of the solution, the Green's

function in Equation (7-3) is replaced by its far-field approxima-
tion. One obtains

j -3 (kx, = m/4)

L’ G(ﬁt) = 2/2-1ﬁ(x—t e (7-8) \In_‘
. n
where |th|>>1- Further simplification is obtained by using the 2
fact that fq
9 K % Ko(l +pa/2) (7-9) =

7-2 e
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in the asymptotic expression for G. This result: is:

“J(kox, ~koep /2 - 1/4)
Glx,) = —3— e t (7-10)

2/21tk.xt

Now using Equation (7-10) in Equation (7-3), the approximate
intensity equation is

I(x,) = K(x.) = BIdgtx(gt-gt)I(gt) (7-11)
where
k,pa"xt
K(x,) = e (7-12)
Bnk.xt

The solution to this equation can be obtained in terms of the
single gquadrature since now the Fourier transform of K(gt) can
be explicitly evaluated.

Before solving Equation (7-11), the physical restrictions
imposed on the solution when the asymptotic form of the Green's
function is used are addressed. First, the term |G(x,)|? appear-
ing on the right hand side of Equation (7-3) has been replaced
by its asymptotic apprcximation. This requires that K|§e|>>1 or
that the receiving anterna be in the far field of the transmitter.
S2cond, the Green's function in the integrand of Equation (7-3)
has been replaced by its asymptotic expansion. This requires that
k|x~8|>>1 or that the scatterers be in the far field of the obser-
vation point. Thus scatterers that are in the near field of the
observation point are not treated correctly. This inaccuracy is
small, however, if the far field distance is not too large. 1In
this case, there are many more scatterers in the far field of the
observation point than in the near field.

Integral Equation (7-11) can be solved exactly using Fourier
transform theory. 1If the Fourier transform of I(x) is denoted by
I(k) where
-jk, *x

e %

I(x,) = Iagti (ky)e (7-13)

7-3
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then the transform of Equation (7-11) becomes:

I(k,) = K(k.) + BK(k.)I(k,) , B = (2m)?8 (7-14) ca;
where 5
Kike) = K(ke) = G, ATTOGTT (7-15) ;
t Q
with ktltlgtl. Solving Equation (7-14) for i(;t) gives ;
K(k,) A
I(k,) = == (7-16) ]
1 - BK(k,) 01
Now using this result in Equation (7-13), the intensity is f
K(k,) -3k, -x j

I(x,) = Id&t = e ©t°t (7-17)

' 1 - BK(k,)

Since i(kt) only depenss on the absolute value of Et' the angular
depend- ‘ce in Equation (7-17) can be integrated explicitly. Let
6 be the angle between k, and x,; then

ky X, = kX, cosb (7-18)

and dk, = k,dk,d6. Equation (7-17) becomes
27 ktK(kt) —jktxtcose

I{x,) = I(x )-I dk I 46 —————— e (7-19)
t t t 1 -BK(k,)

(7-20)

® K, J,(k.%,)
I(Et) - %% I ax, L S g 4
- 4k vkI + (k,a"p) 7-8

v = -
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The expression for the intensity given in Equation (7-20) is
a function of Xy ko, a and B. This dependence on four parameters
can Le reduced to two parameters by appropriate scaling and nor-
df malization. For this purpose, the two-dimensional scattering
: cross section Og and total cross section o, are introduced. These
@ quantities are related to the transform of the two-dimensional
transition operator as follows (Appendix F)
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2nd (27 . 2
g = T I a6t (k,0,kei) | (7-21) L
0 ey
. NY
o = - lﬁgl— Im €(k,0,k.4) (7-22) AN
For Rayleigh scatterers, t(k,0,k.i) becomes !1
£(ko0,Kkod) = —2— k2 (7-23) -3
(2) '
Using this in the expressions for O, and o, gives
ko""l2
o w o (7-24)
s 4
g, = = koa” (7-25)

The albedo, W,, and the optical distance, T, car be introduced
using the cross sections just defined. They are:

W, = — T = po,.X (7-26)

Oy t7t

The albedo is a ratio of the scattered power to the total power,
with the total power defined as the scattered power plus the power
abaorbed by the particle (Appendix F). The albedo lies between 0
and 1. For W, =0 there is no scattering (all absorption) and for
W, =1 there is no absorption (all scattering).

The optical distance is a measure of the attenuation of the
mean intensity, I,(gt). Thus, in the far field of the source

-po X
e t't

I (x,) = [Gxy) [? - (7-27)

ank,xt

‘ala

where Equations (7-10) and (7-25) have been used. From Equation
(7-27) it is seen that when 1= potxttl, the exponential has an
argument of -1. Now Equation (7-20) can be normalized. Let g =
kt/pot and define a ncrmalized intensity
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T(x.) = I(x.)/I,(x,) (7-28)
The expression for the normalized intensity is then given by "i
_  [® ag q J. (qT) *,
I(t) = te I (7-29) ¥
) '/a-!TI -V, 1

Thus the normalized intensity T is only a function of T and W,

The expression of I(t) given in Equation (7-29) is exact but
slowly converging. As g becomes large, the integrand is propor-
tional to cos(gt)//g. This convergence makes numerical evaluation
difficult. Fortunately, by deforming the integral into the com-
Plex plane, a more rapidly converging representation can be obtained
(see Appendix G). The result is

o0 r———!—
I(1) = ZTW,eTK,(Tll-WZ)-b%} eT{ dpp? K": 1+p°) (7-30)
0 p° + W,

The integrand is now exponentially decaying for large p. As a
check, it is interesting to note if W, =0, then I(t) =1. This
means that if there is no scattering, the mean intensity is exactly
equal to the total intensity.

The coherent and nancoherent intensities have been computed.
Some representative results of the computations are shown in Figure
7-1. Because of the need to satisfy the Rayleigh criterion,
ko,/e a << 1, the small trunk radius of 0.0l meters was chosen.
Using this trunk radius and CyberCom permittivity modal III, the
Rayleigh number was computed to be 0.4 at 300 MHz. It is also
seen from Figure 7-1 that a density of 0.1/m? has been used. This
represents, on the average, one tree in every 10 sgquare meter area.
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— It can be seen that the coherent intensities (related to the
Et powers by a constant) decrease almost linearly with distance as
;} expected in the assumed two-dimensional medium. The nonccherent
Ef intensities, however, fall off much more slowly with distance,

9. thereby becoming an increasing fraction of the total intensity.

At 300 MHz, the noncoherent intensity becomes greater than the
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¥ig. 7-1 Coherent and Noncoherent Intensities
through Tree Trunks
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coherent intensity beyond about 230 meters. This behavior is simi- o
lar to that in Figure 8 of Schwering et al [28a], which also uses 5
transport theory. If the total intensity is replotted on a linear R
distance scale as in Schwering et al, it is seen to fall off at a :
decreasing rate with distance.

In Figure 7-2 are plotted the normalized intensities (total/ -
coherent). An examination of the curves shows that the normalized &
intensity increases with distance. At a frequency of 100 MHz or E
200 MHz, the normalized intensity stays fairly close to unity for
distances as great as one kilometer. This means that the random
component of the intensity is relatively small for frequencies be-
low 200 MHz and distances as large as 1 kilometer. The curve for
300 MHz increases rapidly with distance, however, and reveals that

the random component will be important for distances in excess of
200 meters.

It appears that the random component of the intensity increases
with frequency and propagation distance. Although the computed val-
ues presented in Figure 7-1 are interesting, to compute the inten-
sity for a forest with larger trunks, the Rayleigh or low-frequency
approximation can not be employed. The correlation equation must
be used with the transition kernel for resonant trunks. This has
yet to be done.
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8.0 Conclusions

CyberCom has cdeveloped a stochastic radiowave propagation
model useful for assessing the effects of forests and other vege-
tation upon radio communication systems operating in the 200 -
2000 Megahertz frequency band. The model considers the forest to
be representable as a time-invariant ensemble of randomly posi-
tioned and oriented, discrete, canonical scatterers. Tree trunks
are modeled as infinitely-long, circular, lossy-dielectric cylin-
ders; branches as finitely-long, circular, lossy-dielectric cylin-
ders; and leaves as flat, circular, lossy-dielectric discs. Math-
ematical expressions characterizing the scattering properties of
these canonical scatterers in terms of their dyadic scattering
amplitudes have been developed and integrated into the multiple-
scattering theory of Foldy [53] to develop equations describing
the behavior of a propagating radiowave. 1In the case of tree
trunks and leaves, the model is suitable even in the difficult re-
sonant scattering region where the physical dimensions of the
scatterer are comparable to the radio wavelength within. However,
in the case of branches, additional study would be required to
extend the model into the resonant regime.

The propagating radiowave may be considered to consist of two
components - a mean (or coherent) component and a random (or non-
coherent) component. CyberCom has shown that, so far as the mean
radiowave component is concerned, the ensemble of discrete canon-
ical scatterers representing the forest can be replaced by an equi-
valent continuous medium characterized by an effective dyadic sus-
ceptibility X. Simple mathematical expressions have been developed
relating X to such biophysical parameters of the forest as tree
trunk, branch and leaf dimensions, permittivity, number density,
and orientation statistics. Expressions relating the specific
attenuation of a radiowave propagating within an unbounded forest
of tree trunks, branches or leaves to salient biophysical para-
meters of the forest have been developed and shown to agree favor-
ably with experimental data. Utilization of *hese expressions in
radio communication systems design still requires, however, a
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global statistical classification and quantification of these bio-
physical forest parameters.

The effective dyadic susceptibility has been used by CyberCom
in a half-space representation of the forest to extend an earlier
isotropic model proposed by Sachs and Wyatt [101] and studied by
Tamir [107). This newer anisotropic model encompasses the lateral-
wave contributions observed experimentally on long-distance paths
above 200 Megahertz. For generality, it should be refined by con-
sideration of the ground plane.

Using linear system theory, CyberCom has extended the harmonic
anisotropic half-space model of the forest to the transmission of
arbitrarily-modulated waveforms. This extension has been used to
show the pulse distortion arising in the direct-, reflected- and
lateral-wave components of the mean scattered field, and also in
the total mean field. This extension of the model is especially
important if the model is to be used in the analysis and evaluation
of digital, spread-spectrum radio systems.

CyberCom has also investigated the random (or non-coherent)
scattered field propagating within an unbounded forest of electri-
cally~-thin, infinitely-long, lossy-dielectric, parallel tree trunks.
For this simple forest model, CyberCom has shown that the intensity
of the non-~coherent scattered field increases relative to that of
the ccherent (mean) field with increasing distance from the source
and with increasing carrier frequency. This work should be extended
so far as possible towards fully realistic models.

In summary, the homogenous isotropic, refracting slab model of
a forest has been replaced by CyberCom with an inhomogenous, aniso-
tropic, scattering ensemble of trunks, branches, and leaves. In
consequence:

l. The lateral-wave contribution has been found even above
200 Megahertz.

2. Preliminary validation of the model has shown rough agree-
ment with experiments.

3. Results have been obtained for narrow pulse transmission
at 600 MHz.
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4. A preliminary study (as well as field reports) has empha-
sized the importance of the incoherent component of the tran: mitted
field.

As the CyberCom approach is ambitious in both scope and depth,
the £following remain to be done:

a. The technigues already developed must be exercised to
determine the relative importance of forest components and the
effects of varying critical parameters. For example, if the con-
tribution of branches is major, the difficult characterization of
the scattering properties should be advanced in the resonant region.

b. The effects of antenna directivity, the ground, and ter-
minal movement should be incorporated into the model.

c. The difficult transport theory for the important non-
coherent scattered wave should be developed as far as practical.

d. PFcrest studies must be pursued to quantify important

- biophysical parameters in areas of interest.
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Susceptibilities of Wood and Leaves

The complex susceptibilities of green wood and leaves required
for the modeling apprcach of CyberCom have been investigated. Meas-
urements by Broadhurst [1] of the National Bureau of Standards ap-
pear to be the best available. They are summarized in Figure A-~1l.
The spread of the results for the leaves represents the effects of
different percentages of moisture (30-78%) and for the branches,
different orientations relative to the branch axis. The curves
show that the real parts of the susceptibilities x,' are nearly
constant with frequency; the imaginary parts of the susceptibilities
xz" are inversely proportional to frequency at the lower frequencies
& of interest, and rise with frequency at the higher; the results for
bamboo leaves and for tulip tree leaves and branches overlap.
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CyberCom has developed and employed three simple models for
the susceptibility of green wood and leaves. sumrarized in Table
A-1. Model I describes a frequency-indepencdent susceptibility which
is convenient for ascertaining the effects of scatterer geometry on
the scattered wave. Model II describes a susceptibility character-
' ® ized by a real part which is frequency-independent and an imaginary
part derived from a constant conductivity of 0.1 mho/meter. Model
III best reflects the typical behavior of measured data and includes
both a frequency-independent real part and an imaginary part related
to both conduction and relaxation losses. It is shown in Figure A-l.
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The imaginary parts of the susceptibilities (the loss factors)
are shown in Figure A-2 for the three CyberCom models. The recovery
of the Model III loss factor from its minimum near 1 GHz is clearly

[ evident, and may be attributed to increased relaxation losses as
the resonant frequency of the water molecule (2pproximately 22 GHz)
is approached.

2 B E s am e a T o S SR TaT AT W T FRF ST WWEYS B F N B ¢ T
.

[ .
;
ﬂ
.
b
o
}
e
3
)
3
b
2
b
[
b
T
'R
|
r,
b
3
i
"».
]
|
x
’
1




S o
- Q - ...nw
2 = 2
“
A, m M
N\ o - °
N + O q O O S _
[ o L 8 8 o N
~ 8 & R
N m a8 >
o (ol ~t °
4 O A & & ls W
tn — a0
/\l’ m
/Z /\ W
\/ H
/] o o 1 S
8 1a o] {2
o .
. je 3
2 o 2 .
. M £ . S
o tn ~ ~—t n o~ fr
pur
s =
> =<
T . e et Tt etaTeTeTeTa ! WM o, T L e e e ‘*
eaxnnstnfe N MRt tatatatatal SRS TR O} A S

Figure A-1l:

Susceptibility of Wood and Leaves

T T L
T w - -~ » - ~ - -
e A e Bt AR ma e W w W

PO PR SN WA o

S B 8,

A

Somalia dm A




4

|
<
‘

@
. TABLE A-1 Susceptibility of Wood and Leaves - CyberCom Models
CyberCom L4xp-3xg = €y = €,'-Jeg"
® Model Xg'=cg-1 Xg "=€q" (Loss Factor)
I 39 10
II 39 1.8/1.’(;“z (0 = 0.1 mho/m)

r 2
® 111 39 (1.5/f.,.) + (2, )/11+(£,,  /20)?]
-
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Appendix B A
o Scattering Amplitude-Transition Operator Relationship ;:

for Two-Dimensional Scatterers

'. In this Appendix the relationship between the scattering ampli- o
tude and the transition operator will be obtained for two-dinensional
scatterers. This will be done for both the vector case (oblique

: @ incidence) and the scalar case (normal incidence). The methodology ;—j
used will parallel that of Lang [57] who derived the relationship for j
three-dimensional scatterers. 4‘

< Assume a dyadic plane wave is incident on a two-dimensional

scatterer as shown in Figure 2-4. The incident wave is of the form

- (ko X, +k, 2)

g, (x) = (I-ii)e (B-1) ol
° -
where i is in the direction of incidence, i.e. '1
. o j
i=(k, +k,2")/k, (B=-2) _::_'i
Py with 2
3 _ _ .
: ko =/ke +k; o ke = |k | . (B=3) .
¢ The dyadic scattered field is given by
b
..w Ss(") = f d?ﬁ' 5(5-1(.') e f din E(ﬁ' x")
;: . " o
e, (x") (B--4)
¥
N where the dyadic Green's function G satisfies
LA
; L - G(x) = I8(x) (B=5)
with L given by equation (2-3-5) and t the kernel of the transition
L operator.
E\
B-1
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Since the scatterers are two-dimensional, they are invariant in

'
N
ii the z direction, i.e., _
‘\" L;
A5 E(x',x") = t(x},x7,2'-2") (B-6) :
:é Putting equation (B-6) into equation (B-4) and introducing the f
Fourier transform of the transition operator with respect to z yields g;ﬁ
"y

g, (%) = / dxidz' G(x.-xt,z-z'): f axp E(x{.x}, k)

o (z-pp) eI etxeth?) (g
where
'kzz

é(itliélkz) = [ dz g(gt,gé,z)e+3 (B-8)

Now introducing the Fourier transform of the dyadic Green's function

with respect to 2z gives

x¢
. (1-ii)e”d Ke o Xptk,2) (B-9)
where
G(x,,k,) = / dz G(x,,2)e’Xz? . (B-10)

Before proceeding, the transformed Green's function must

X be found. This is accomplished by transforming the well-known
expression for the three-dimensional dyadic Green's function

. [Vvan Bladel, 8l1]. The three-dimensional dyadic Green's function is

' vy -
G(x) = (I - —5)g(x) (B-11) 5
. = = k - %
i ° o
;i where g(x) is the scalar Green's function; \’ﬁ
et
':7: e-jkor
- g(x) = = , = |x| (B-12)
‘fl This scalar Green's function satisfies the scalar wave equation ﬁ
e d
p.
” (V2+k§)g(_:£) = - §(x) . (B-13) ‘Ti
2 ]
L "9
N B-2
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To find the transformed Green's function, first, the trans-
formed scalar Green's function is found. This is done by Fourier-
transforming equation (B-13) and then solving the resulting

two-dimensional equation. The result is

g(x) =~ 375 8f® (k |x, e I*2? ax, (B-14)
where
v/ k2 - k2 x| < x
k, = o "z ' z °o (B-15)
=3 Mk - kg . k| > kg

Now putting equation (B-14) in equation (B-1ll), bringing the dyadic
portion of the operator through the integral and finally using

equation (B-10) yields

neéx >

(?ﬁtrkz) = - i‘(__]; + -}Z—z—) Ho(l) (ktl?ﬁt“ (B-16)
(o)

~

., 5O
where V = Vt - jk,z".

To proceed with developing the relationship between the scatter-
ing amplitude and the transition operator, an asymptotic expression
for g.(x) will be needed. An examination of equation (B-9) shows

that this in turn requires a large |§t| approximation for
G(xt"xt'kz)' Assuming |x | > Igél and using the asymptotic

expression for the Hankel function results in

(1) ' [ 2 ilkex k.0 -1/4) -
H)o' (k|2 -xt]) ~ iﬁ:;: tXe 7K Q¢ " Xe (B-17)

where o, = x./|x,

Now substituting this result in equation

(B-16) and keeping highest-order terms yields

A - - 3 - o J -
G(x,=x},k,) ~ -3 E709) o7 (keXp=keop - x¢=T/4) (B-18)
v E'ﬂ'Etxt
B-3

...................................




h =0, +0.2° with o, = k_/k @y
where o =o, + 0,2" wi o, 2 Koo :
The final form of the asymptotic expression for the scattered S.
field gs(gc_) is obtained by substituting equation (B-18) into Q"'
Fd

equation (B-9). The result is H
2 ~ , N

g, (x) ~ —EL (1-00) £ (k 0, sk i, ik,) - (T-i1) e (KeXethp2t1/4) (g9, :
VBT X, X

@y

where i, is the transverse portion of i (i, = k,/k,) and the

two-dimensional transformed transition operator is given by

Lk, k) = —L (. nt sk, el (e oXemkioxd) _
Elk, kisk,) = on? S ax.ax! $(x,.x!:;k,)e’ 2t St St (B-20) "H

The desired relaticnship can be established by comparing the g
definition of scattering amplitude with equation (B-19). The two- o

dimensional dyadic scattering amplitude is defined as

o=J (KXo ¥k, 2)

- . w, .

o e (x) ~ £lo,,i, 1k, ) &— . (B-21)
k- =s e'=t'=t’'"z ',x_t
F Comparing equations (B-19) and (B-21), one obtains
r-::':_ . ~ . '
e '
b where .
. v
. 1/2 - * .:'
: v = [2ni/k,) 0 e7IT/4 (B-23) 3
Before concluding this appendix a similar relationship will ‘1
e LY
E! be derived for the scalar problem. Because the scalar problem is .
f:?_; a special case of the two-dinensional vector work just presented, ;:-
those results can be used.
Lr! The scalar problem restricts attention to propagation normal

to the tree trunks and to sources that only excite vertical waves.
E! B-4
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The vector problem reduces to the scalar problem as follows:
E o o
<E(X,,k;)>+2" = 2m<y(x,)>68(k,) i
A n o (B-24) -

If one dots equation (2-4-4) by g? and introduces the scalar

specializations as given by equation (B-24), one obtains the scalar

bq’ mean-wave equation as given by equation (2-2-4) with n@
N ' - o.‘\ . . ° - :~‘.
: In addition, an examination of the definition of both the vector ;ﬁ

and scalar scattering amplitudes as given in equations (2-2-10)

and (2-2-23) shows that

Chab: St i

f(o,i) = 2°:£(0,1,0)-2° . (B-26)

The desired relationship between the scalar scattering amplitude f
and the transformed scalar transition operator t is obtained by
dotting equation (B-20) from the left and the right by g?, and
then using equation (B-26) and the transform version of equation

(B-25). The result is

f(g,_i_) =4t (kog'koi)

where 6 is given by equation (B-23).
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Appendix C ;j

Correlation Equation ;i

I.. this Appendix the approximate eqguation for the correlation ii
equation will be derived. The methodology employed in the deri- -
vation will parallel the Foldy development for the mean equation. ij

The starting point is Equation (2-2-29) for the scalar field
quantity . Multiplying this equation through from the left by
L'l gives an expression for ¥ in terms of the incident &and scat-
tered fields. It is

N
Y=y o+ )) L-lij(j) (c-1)
i=1
Here the observation point for the field Y is x, i.e., ¥Y=¥(x).
An equation for the conjugate field ¥* = ¥*(x) at point X can be
obtained from Equation (C-l). The result is

N *
T I j{ L‘lwgw(j’* (C-2)
=1

In the remainder of the appendix, the dependence of quantities on
X or x will be denoted by whether the symbols are starred (con-
® jugate) or not.

Now forming the product Y¥* and averaging yields

Nt . N :
-1 -1 (
<rye> = vy, J oL erv ) 0 ) 17 eny ) >ye

v gTTYY TFTEN WP WOB Iy

[N j=1 j=1 J

N N * . .

-1.-1 A(3)y(3)*
+ )Y ) vTLer.mpyly > _

351 k21 3'k (c-3)
'* The double sum appearing in the above equation can be broken into
f like terms (i=j) and unlike terms (i¥j). Doing this, the follow-
: ing expression results:
S
4
e

C-1
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YYr> = ¥ ¥E 4 ¥ ] L ergy (0% o } i ler AT

j=1 j=1
¥ ,-1,-1¢ (3 (3)*
+ ) LTLTT <. 7>y )ly %
3=1 3 :
:
¥R - (3)y ik) * “5
+ ) ] v <TyTE>Y v! (C-4) ;
j=1 k=1 5
¥k
To obtain an equation for the correlation function a closure @
approximation is employed. The approximation to be used is
\y(j) L <\l,>
. . -
W(J)‘P*(J)z <\yw*> (c_s) .
\l’(j)y*(k) ~ <‘,><|y*> j#k
This is a generalization of Foldy's closure approximation used to ‘0;
derive the mean equation. Using this approximation in Equation 1

(C-4) gives:

N *
-1
<Y¥Y*> = Y Y% + V., L “<T,.><¥y*>
‘ i‘i i jzl j -
:&f N -1 -4
o + ] L <Ty><¥>¥E + Z L™TLT U< TE> <Y *>
R j=1 j=1 373
w .
E R | -1 '1
L + J ] LTTer ><¥>LTi<TA><cyw> (C-6) ]
N j=1 k=1 J ] R
X 3rk A
E” Since the particles are identically distributed, the statistics \"'1
- for each particle are the same, i.e., ]
= N 3
& 1 <Ty> = N<T> (C=7) 3
L! ng \Da
i N 3
i:" z <Tj'r*.'> = N<TT*> (c-8) :
- jzl J 5
) K
1
o 2
C=-2
]
R R T T ST STt




Employing these simplifications in Equation {C-6) results in

i

@ <YY*> = ¥ ¥} + NY,L © <T*><y>
®
+ NL Lemscysyr + NL™IL"lerrescyyes
*
| + (N’-u)L‘1<'r><w>x.'1<'r*><\r*> (C-9)

This is the desired equation for the correlation function <¥¥*>,
It can be simplified substantially by making use of the mean-wave

e equation.
The mean-wave equation is given in the text by Equation
(2-2-48). 1It is
f<y> = g (C-10)
e where
£ =L - N<T> (C-11)
In order to simplify Equation (C-9), the mean equation is put in
® a slightly different form. With this purpose in gnind, multiply
Equation (C-10) by L’l from the left. This gives
<Y>=V¥, + NL'1<'1'><\!'> (C-12)
o Now using this result, Egquation (C-9) becomes
*
<PY*> = <¥><¥*> + (N2=N)L Ll<p><y>L™lem> <y (c-13)
Multiplying from the left by ££*, using the fact that £L™) and
|® neglecting the N? terms in Equation (C-13) yields

££*eww*> - N<TT*><ww*> = gg* (c-l‘)

The above steps can be justified by scaling the problems with re-
. spect to the characterstic size of the particle, then N is replaced
by the fractional volume which is small.

The final form of the correlation equation as it appears in
Equation (2-2-44) is obtained by writing the spatial average of
L4 TT* out explicitly and by using Equation (2-2-38).
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APPENDIX D

Dyadic Notation

According to Lindell [124], dyadic formalism is the most suit-
able notation for linear vector functions when applying the gibbsian
vector notation to electromagnetic fields. Nevertheless, although
conceived by J. Willard Gibbs nearly one-hundred years ago {1884),
dyadic formalism has been introduced into electromagnetics only com-
paritively recently, and is not generally included in most engineer-
ing curricula. Thus, for the convenience of the uninformed reader,
those basic definitidns and properties of dyadics emplcyed in the
body of the report are reviewed here. ‘

D.l1 Basic Definitions

A dyadic (more properly called a dyadic polynomial) is an oper-
ator representabl: as

' D = _a...jgl + 2222 + csecscee + éﬂgn (D-l)

where a.,a_,...a and b, ,b_,...b are vectors and which, with an ar-
=1 =2 -n =1"=2 -n

bitrary vector v, forms the scalar products

v:D = (v-ai)by + (v-a2)b2 + ..... + (vea )b (D-2)
D-v = a;(byy) -+ az(ba°y) + ..... + a (b *Vv) (D-3)

The vectors {a ]} are called antecedents; the vectors {b } are called

consequents. Each term of the dyadic, g*gk is called a dyad.

Dyadics arise naturally in electromagnetics when vector operators
are to be separatzd mathematically from the field vectors being oper-
ated upon. For exanple, the projection of the electric field e along
a linear antenna having the direction of a unit vector u can be writ-
ten as u(u+e). Here, the vector u performs the projection operation
upon the electric field vector e. If these two vectors are to be
separated mathematically, it is necessary to adopt the dyadic repre-
sentation uu in the expression (uu)-e.
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D.2 Basic Properties

Because in three-dimensional vector-space any vector v can be o
expressed in terms of any three vectors a,b,c forming a base (i.e., :
satisfying the condition a x b * ¢ ¥ C), any dyadic can be written %
as a polynomial of no more than three dyads. For example, the dyadic b
polynomial of Equation (D-l) can be recast in the form ,,Q

e
D=ae+bf+cyg (D=4) 7
R
N
where ;!
= —E—& L ] (] -
€° [ab ¢ 2 aibi (D=5)
= SXa_ | -
£ fab cl Eﬁil_’i (D-6)
axb
2 @be] ° 2 ajb; (D=7)

Since the consequents e,f,9 ¢can also be expressed in terms of
an arbitrary three-vector base, it is clear that the dyadic D is
representable in terms of nine scalar coefficients.

For example, if the same three-vector orthonormal base is
employed for both the antecedents and the consequents, D might
be written in the form

b
-

»

i R = 4;;x°%x° + d;,x°y° + 4,3x°2°

= + dy1¥°X° + dypy°y® + dp3y°2° (D-8)

o + d312°%° + d322°y° + d33z°2°

F! Although these nine scalar coefficients can be written as a matrix g
QL [dij], a dyadic is not a matrix. The matrix [djj] depends upon the f
:1 base employed and so is coordinate-dependent; the dyadic is not. o
;‘ A dyadic serves as a linear mapping from one yector to another. &.:
E: Conversely, &ny such linear mapping can be expressed in terms of a ;q
Ef dyadic. This can be demonstrated by applying an orthonormal base "
o "‘{uj} to an arbitrary linear function £(a) and noting that R
v - - = -
A , . e - b
L! £(a) =XXu;u; + £(uyuy-a) (D-9) 4
¥ = Z2u; + fluginyugl - 2 (D-10) §
::::: 1
l_:‘; 1
4 D-2 4
3
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The dyadic in the square brackets corresponds to the linear function

£, i
L

RN
N -
[Y PR

The identity mapping has the property of mapping every vector
into itself. The corresponding dyadic, I, is called the unit dyadic
or jdemfactor. Thus,

' X
.
_s_

* I-a=a=a-‘g (b-11) 7@

1

Expressing a in an orthonormal base {uj} shows that

Iz

e

u; + usup + u3zuj (D-12)
® More generally,

I1=2aa" +bb'+cc' (D-13)

where {a',b',c'} is a base reciprocal to the arbitrary base

[ {a,b,c}. Thus, as for any dyadic, there exists an infinity of
representations for the unit dyadic. As a consequence of Equation
(D-11) the matrix of coefiicients [dijl associated with a given base
fa;} can be found in the relaticn

R=21R1l-~" ZZ‘.‘.{ ’2'9_3).‘512; = Zznijﬂifﬁj (D-14)
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APPENDIX E

The Fast Fourier Transform

The fast Fourier transform (FFT) is a highly efficient algo-
rithm for computing the discrete Fourier transform (DFT). The FFT
can be used in place of the continuous Fourier transform only to the
extent that the DFT could before, but with a substantial reduction
in computer time. This appendix reviews the basic properties of the
DFT and itz relation to the continuous Fourier transform, introduces
the FFT and identifies the major pitfalls likely to arise in its use,
and exemplifies the application of the DFT and the FFT by considering
a band-limited, high-frequency, rectangular pulse.

C.l1 Discrete Fourier Transform

The Fourier transform pair for continuous signals can be writ-
ten in the form

X(f) = _f_:x(t)cxp{-jZﬂft}dt (E-1)
x(t) = fmx(f)exp{-c-jmrft}df (E=2)

The integrals in Zquations (E-1) and (E-2 are actually finite in
any practical case since only a finite segment of an eesentially
band-1imited signal will be available. This situation is commonly
represented by setting x(t) = 0 for 0 > t > T when the signal x(t)
is available only over the time interval (0,T), and X(f) ~ 0 for
~B/2 > £ > B/2 when the amplitude spectrum X(f) is essentially band-
limited to the frequency interval (-B/2,+B/2).

The analogous discrete Fourier transform (DFT) pair that applies
to sampled~data signals can be written in the form

N-1
X(fn) = At 2 x(ty)exp (~j27Eyty) (E-3)
k=0
N/2-1 (E-4)
x(ty) = Af é A(fy )exp{+32nfpty )
m==N/2
E-1
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N If the signal x(t) has been sampled uniformly at the Nyquist rate so :ﬁ
: that x

At = T/N = 1/2B, Af = 2B/N = 1/T

;. (E'S) '::.
:: :32
3 then upon letting n:%¥
tx = kAt, £y = mAf i
X m=n (E~6) .
Equations (E-3) and (E-4) become
) N-1
X(m) = At X x(k)exp{-j2mmk/N} (E-7)
k=0
N-1
x(k) = A£) X(m)exp{+j2mmk/N] (E-6)
m=0

The periodicity of X(m) apparent in Equation (E-7) has been
used in re-ordering (for ease of computation) the summation appearing
in Equation (g-8). More generally, however, it is apparent from

these equations that both X(m) and x(k) must be considered periodic,
i.e.

X(m+N) = X(m) (E-9)

X (k+N) = x (k)
(E-10)

This property has been anticipated in writing Equation (E-4) where
‘ the migsing end point X(fn/z) is considered tc be the first point of
- the next period in a periodic extension of X(f,). Mathematically
speaking, the interval from which samples of X(f) [and x(t)] are
taken must be considered closed on the left and open on the right
(or vice-versa). This property is illustrated in Figure E-1l. Fur-
ther discussion of this topic can be found in [157].

When the sampled-data signal x(k) is real, the real part of
X(m) [denoted hereafter as X'(m)] is symmetric about the folding
frequency B [m = N/2] and the imaginary part of X(m) [denoted here-
after as X"(m) is antisymmetric. Since X(m) has been

E-2
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interpreted as being periodic, these symmetries are equivalent to
saying that X'(m) is an even function of m and X" (m) is an odd func-
tion. This also means that the Fourier coefficients between N/2 and
N-1l can be viewed as the "negative frequency" harmonics between =-N/2
and -1, respectively. Likewise, the last half of the sampled-data
signal x(k) can be interpreted as negative time (that is, as occur-
ring before t = C).

Since the FFT algorithm provides an efficient transformation to
the frequency domain, it is interesting to consider the product

Y(m) = F(m)X(m) (E-11)

where Y(m) is the DFT of y(k), F(m) is the DFT of f(k), #nd X(m) is
the DFT of x(k). According to Equation (E-7)

N-1 )
y(k) = AED [F(m)X(m)]exp{jZﬂmdN} (E-12)
me=0

According to Equations (E-5) and (E-7) this can be written as

N-1 ( N-1 N-1
y(k) = % ) zx(‘t)e'jz"m/“] :(e)e'jzm’t‘/N]eﬁm/n

m=0 | T=0 £=0 (E=13)
Since all of the sums are finite this can be written
N-1 R-l N=-1 et
yx) = SEF T x(rg(e) | ZeIETHEM p-14)
=0 t=0 m=0 .

This can be simplified through the use of the orthogonality relation

N-1 3
, N f n=m (modulo N)
Y et/ gemenw_ 3T ( (E-15)
2=0 0, othexwise
Thus, Equation (E-14) is zero unless ? = k-1 and hence
N-1
( Y(k) = ot L x(t)£(k-T) (E-1€)
=0

Equation (E-16) may be recognized as the discrete form of the convo-
lution integral

t
y(t) = fox(T)f(t-T)dT (E-17)
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Equation (E-17) can be associated with the response y(t) f a fixed
linear system to the input x(t), if that linear system can be char-
acterized by the impulse response f£(t,t) where

f(f-1), 1if t>1
o, if t<r

fe,m) = (E-18)

C.2 PFast Fourier Transform

The fast Fourier transform (FFT) is a highly efficient algorithm
for computing the discrete Fourier transform (DFT). Taking advantage
of the fact that the complex exponential weights appearing in the DFT
can be calculated iteratively, the algorithm employs a clever compu-
tational technique for sequentially combining progressively larger
partial sums of the exponentially weighted data samples to realize
the DFT. 1Two mathematically equivalent versions of the FFT algorithm
usually provide the basis for implementation: the Cooley-Tukey
(decimation-in-time) algorithm and the Sande-Tukey (decimation-in-
frequency) algorithm. The algorithm chosen for implementation is
usually selected to exploit the characteristics of the sampled data
and/or the hardware-software properties of the computer being used.

The value of the fast Fourier transformation lies in the reduc-
tion of computer execution time in evaluating the discrete Fourier
transform. Whereas a direct N-point evaluation of the DFT typically
requires a computer execution time proportional to N?, the FFT re-
qguires a computer execution time proportional to only N-zogzN. The
approximate ratio of FFT to direct execution time is given by

N-l;%zN = 1°§2N (E-19)

For example, if N = 256 = 2%, the FFT requires only about 3% of the
time required by direct computation.

Four problems often encountered in using the FFT are: aliasing,
leakage, picket-fence effect, and round-cff error. The term "ali-
asing” refers to the fact that high-frequency spectral components of
a band-limited signal can "impersonate" low-frequency spectral com-
ponents if the sampling rate is too low [153]. This circumstance is
reflected in its amplitude spectrum where the sidebands of frequency
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translated baseband replicas are observed to overlap. This problem
can be eliminated by sampling the signal at a rate at least twice as
high as the highest frequency present in its amplitude spectrum. G
"Leakage" refers to distortion in the amplitude spectrum of a band-
limited signal arising as a result of utilizing only a finite number
of data samples from the signal's data record. This problem can be
mitigated (but not eliminated) either by increasing the record length
of the signal or by applying a data window to the data record [157].
The "picket-fence effect" refers to enhanced spectral responses at
the discrete frequencies of the DFT due to interstitial, unresolved,
spectral components of the signal. This problem can be mitigated
(but not eliminated) by using an interpolation function between the
discrete frequencies of the DFT or by extending the data record arti-
ficially with zero samples in order to increase the spectral resolu-
tion of the DFT. "Round-off error"™ arises in numerical computation
as a result of the finite word length employed in digital computers
for the representation of numbers. According to Kaneko and Lin
[159,160) the total relative mean-square error (MSE) due to round-off
error is bounded by
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where, N-1 %
< X lelm|2> g
MSE =
(E-21)
Z, lxm |*
e(m) = &(m)-X(m) (E~22)

n = logyN (E-23)

and ®(m) is the computer value of X(m) based upon a b-bit representa-
tion for the mantissa (not including sign) of a real variable using
binary floating-point arithmetic with double precision accumulation.
For example, using double-precision real variables of 4 bytes each
(3-byte mantissa, l-byte exponent) so that b = 23 and a 512-point
transform so that n = 8, the total relative MSE is bounded by

E-6
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3.79x10 <MSE<1.14x10 (E-24)

The total relative root-mean-square error (RMSE) in the amplitude
spectrum is thus bounded by

1.95x10  <RMSE<3.37x10~ (E-25)

The relative accuracy in the calculation of the amplitude spectrum
is thus, roughly speaking, about 1 part in 107.

In passing it may be noted that the FFT not only reduces the
computation time of the DFT, it also substantially reduces the
round-off errors associated with direct computation. In fact, both
computation time and round-off error are reduced by the same factor
of (ZngN)/N [156]. Further, although the above discussion of the
problems encountered in using the FFT was couched in terms relating
to the forward transformation of variables from time to frequency
[Equation (g-7) ], the discussion remains valid in the inverse trans-
formation of variables from frequency to time [Equation (E-8)].

C.3 Example: Bandpass Rectangular Pulse

The basic properties of the discrete Fourier transform (DFT) and
its computation by the fast Fourier transform (FFT) may be exempli-
fied by considering the bandpass rectangular pulse

x(t) = p(t) cos(2nf t) (E-26)

where fo is the r-f carrier frequency and p(€) is the pulse envelope
defined by

1, |t]< L/2

. p(t) =
0, |t]> L/2 (E-27)

where L is the pulse length (duration). 1In the numerical computa-
tions which follow, fo will be taken to be 600 MHz and L to be

5 nanoseconds (3 r-f cycles).
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The amplitude spectrum of the pulse envelope can be determined
from Equation (E-1) to be

P(f) = L sinc{nfL} (E-28)

It should be noted that although the pulse p(t) is undefined for
|t| = L/2, the inverse transformation of P(f) using Equation (E-2) ‘ﬂ
converges to -

' p(|L/2]) = 0.5 (E-29)

because of Gibb's phenomenon [ ]. As a conseguence, the numerical
representation of p(t) at the point of discontinuity (|t| = L/2)
must be that afforded by Equation (E-29). Failure to accomodate
Tibb's phenomenon at points of discontinuity in the signal (or even
the spectrum) will lead to spurious oscillations in the transformed
variable.

L

° The r-f carrier cos(21rf°t) and its amplitude spectrum [two ¢
functions at :fol and the pulse envelope p(t) and its amplitude
spectrum P{f) are shown, respectively, in Figures E-2 (a) and (b).
The bandpass rectangular pulse x(t) [refer to Equation (E-26) ] and

e

® its amplitude spectrum.
E-30
X(£) = &L Binc{n1L(f+£f,)} - sinc {vL(£-£,)}) ( )
are shown, respectively, in Figure E-2 (c). In consonance with

Equations (E-11) and (E-16) and the time-frequency duality of the
Fourier transform [refer to Equations (E-1) and (E-2) ], Equation
(E-30) and Figure E-2 (c) reflact the fact that the amplitude spec-
. trum of the product of two time functions is equal to the convolution
of their respective amplitude spectra.

e ——— LW W i e W TR T A w

5 The sampled-data signal x(k) is obtained by multiplying the
bandpass rectangular pulse x(t) by an infinite train of unit impulses

e

(or Dirac comb) defined mathematically by
c(t) = 2 8(t-kat) (E-31)
km=w
.

........




The Dirac comd and its amplitude spectrum

A s EEEME VP T v _ e a

are shown in Figure E-2(d). The sampled-data signal x(t) and its
amplitude spectrum C(f)*X(f) are shown, respectively, in Figure E-2
(e'. It is apparent from this figure that, because the amplitude
spectrum of the pulse [P(f)] is not strictly bandlimited, aliasing
cannot be entirely avoided and some spectral overlapping is ines-
capable. However, CyberCom has found that the aliasing associated
with non-bandlimited signals (which, strictly speaking, arise only
in mathematical models and not in real systems) can be held within
acceptable bounds, in most cases, by letting

Phaa BRE ¢ T g

LR

PEICIC IO SLICUL LR ICOR.

At = [2(f.+399)]“ (E-33)

where B” is the low-pass equivalent bandwidth containing 99% of the
signal power. Note that this rule is consistent with the low-pass
Nyquist sampling rate when the signal is strictly bandlimited to B
Hertz. For P(f) ([refer to Equation (g-28) )}, the 99% containment
bandwidth is [153]

1 [ 3
Byg = _OI.§ (E-34)

In the numerical computation which follow

L= 5 (E-35)

80 that

A o SN -" «
" .'.. P e
)

. |
E’ At Eo (E~36)

which corresponds to a sampling rate of 8 samples per r-f cycle. It
should be noted that the aliasing appearing in Figure E-2 (e) will
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not lead to distortion in recovering the sampled-data signal x(k)
{fj from C(f)«X(f) via the inverse Fourier tranformation. This is as-
{Q‘ sured by the isomorphic (one-to-one) relation between a Fourier
e
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t:ansform and its inverse. However, subsequent signal processing
operations which modify the amplitude spectrum C(f)*X(f) [e.qg.,
convolution] will be affected.

The continuous frequency-domain function C(f)«X(f) shown in
Figure E-2 (e) can also be made discrete (sampled) by treating the
fample -data signal x(k) as one period of a periodic function with the
data canple x(N/2) taken as the first sample of successive periods.
This forces Lotu the time-domain and frequency domain functions
[x(k) and X(m), Jectively] to be infinite in extent, periodic,
and discrete as shown in Figure E-2 (f). The resolution in the fre-
quency-domain is determined by the relation

N S 1
af T NA t (E-37)

where T is the period in the time domain, At is the sampling rate,
and N is the number of data samples. It is apparent from Equation
(E-37) that the resolution can be increased by increasing the sam-
pling rate and/or the numbei of data points. The number of data
voints can always be increased without changing the sampling rate

by filling out the (truncated) data record x(k) with zeroes. 1In

the numerical calculations which follow N was taken to be a power of
2, spe. fically

= 2% =
N=2 256 (E-38)
As a consequence of Equations (E-36) and (E-37)
(E~39)
f=f =Dy,
32
E~-11
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APPENDIX F

! g
;-]:. Optical Theorem for Scalar Fields in Two-Dimensional Media .ﬂ
ff The purpose of this appendix is to apply Poynting's vector E%
: theorem to two-dimensional scatterers that are normally illuminated. Eﬁ
This will lead naturally to definitions of the total, scattering ﬁi

and absorption cross~sections for the scalar case. ’?

Consider a two-dimensional scatterer of cross-section Sp as %?

shown in Figure F-~1. Assume that the scatterer is oriented in such 0

il

a way that its generating elements are parallel to the z axis. p%

The scatterer is illuminated by a unit amplitude plane wave. iﬁ

E,(x ) =9y, (x)z° v, (x,) = e IXod xe (F-1) :§

=i =t i=’= i= 2

-

~
Wi
I.Ia‘
~ Ta
.-
PR
‘

where i-z° = 0.

Apply Poynting's vector theorem to a circular cylindrical
volume of unit height and surface S,. The cylinder has radius r
which is assumed to be large. If E and H are the total electric
and magnetic fields then

Ll . l sR%® = -
: R, js. S.da + 3 jvocggdv 0 (F-2)
g where S, is the complex Poynting vector,

i' Sc = 4EXH* (F-3)
i o is the conductivity of the scatterer's material and V, is the

Ef volume of the unit height cylinder. Because the scatterer and

b the incident field are both independent of z, it follows that

h~

E = E(x,) = ¥(x)z® (F-4)

The scalar field VY(x:) is composed of an incident and scattered
\- portion, thus

I LY.L T

V(X) = Vi (Xe) + Vg (x,) (F-5)

The scattering amplitude, f(o,i), is introduced when the scattered
wave is represented in the far field as follows:
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where o = x,/r. iF
Finding the incident and scattered magnetic fields from e
Maxwell's equations for large r and then using them in equation ﬁﬁ
(F-2) results in the following equation: iﬁ
| | .,

2n 2n - C

[ 1£(0,1) |2d0+ £ R, [ [£(0,1) eIFor(cose-1) -

o (3 't

.

=jkor(cosb-1) (F-7) 1

+f*(o,i)e cosb] A6 = o, ==

where the angle 6 is defined in Figure F-1 and the absorption
cross—-section o0, is given by [55]

€
= -2 . -
00 T /i oE-EQV (F-8)

The derivation is completed by asymptotically evaluating the
the integral in equation (F-7) for large k,r. The integral can be
divided into two integrals each of which can be treat=d by the
method of stationary phase. A calculation shows that there are
4 stationary points of 6=0,r and 2w. Now using this asymptotic
result in equation (F-7), one obtains

F-3

: 2W 2 -
|® [ 1£to,i) [Pae + 22T g £(i,1)e73T/4 4 o, =0 (F-9)
g ° ko
; Because the scattering cross-section o5 is defined as
9 2
; oo |
i, 8= Jo |£(0,1) | 246 (F-10)
; and the total cross-section is the sum of the scattering and
? absorption cross-section i.e.,
;w Op = 0, + Oa (F=11)
: one obtains
o, = - 22T g 1£(1,1)e37/4) (F-12)
; /ko
L %
! The expressions for o, and otin termgs of the scattering
: amplitude £ can be put in terms of the Fourier transform of the
! transition operator t. By using equation (2-2-24) in equations
i. (F-10) and (F-12), the following expressions are obtained:
»
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The alternative representation for I(1) can be obtained by deforming
the integration path in the g plane. To do this an integral from

) -» to +» is needed. This is obtained by representing J_(tq) in
terms of the Hankel function,

APPENDIX G
Alternative Representation for the Intensity of Scalar Fields .‘
in Two-Dimensional Media }
In Chapter 7 an integral representation for the normalized ...4'
intensity [equation (7-28)] has been obtained. Unfortunately, the "‘4
REART]
integral is very slowly convergent for large values of 1g. To ;I;jj
rectify the difficulty, the integral will be converted into an '.:;'C;I
° alternate form which is more rapidly convergent. .‘..3
- »
3 For convenience, the original expression for I(tT) is repeated :_.j,';'_'j
: here. It is given by f_ljii
- f('t)='re"!: dga,(1q) (G-1) 2
= aZF T W, 2
a -

T . T

3 t) = 't + 8P t@)/2 (6-2)
® and then substituting this expression into equation (G-1).
! This gives Lo
b. _ zet o q}{il) (tq)
' I(r) == odq :".—::\
' AL - W (G-3) S
?. - (2) T
t ° T - W, =
; T
‘,
! The last integral in equation (G-3) is now transformed by letting ."}
: q' = qe“"'E) , € > 0. The result when combined with the first }
integral of equation (G-3) is given by o
27 ")
(1) Py
i T dq gH
| ® = Te o (1q) 2
: (1) = —5- P (G-4) !1
; g+l - wo ‘:1
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Integration Paths for Normalized Intensity
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where P is the resulting integration path shown in Figure G-1.

The small parameter ¢ has been introduced in order to avoid the
branch-cut of the Hankel function lying along the negative real '._.;1‘
g axis.
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An examination of the singularities of equation (G-4) shows
® that in addition to the Hankel function branch-cut, there are ""
simple poles at g = q, =+ i YI-WZ and branch point singularities
at ¢ = ti. The branch cuts associated with these branch point
singularities are chosen alc.¢ the positive and negative imaginary
axes. The alternative form of the integral is now obtained by ;g
deforming the integration path P into the upper half of the g plane. i
Because the integrand tends to zero as |g| + = in the upper half i
g plane, the inte ral is represented wholly by the contribution due j
to the pole g = g* and the upper branch-cut. The result is

T(1) = 2uirw°e‘a;1’ (i1 /IWZ) /2

(1) G-5
+ ——2—131 / aq q Ho " (v (6=5)
C1+C2
qZel - W, ;

where the paths N and 02 are defired in Figure G-1l.

1
real positive axis and combined. The result is

® The integrals over C, and c2 can each be transformed to the q

I(t) = ZoneTKO(‘l’ ,'fl.'-woz) =

v TR TNy VTR e

27 ™ K (1 v’.'[-!-p’)

—_— G-6) -9

+ = eTf ap p*-2 ( ek

m o p2+ w2 o

iu- Here K,(z) is the modified Hankel function. Because K,(z) is .Ti
‘ decaying exponentially for large z, the integral converges rapidly

for large values of p. Y
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